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THE PROPAGATION OF PLANE ACOUSTIC WAVES IN A RADIATING GAS

By BARRETT STONE BALDWIN', Jr.

SUMMARY

A study i._ mad_ _ _J the interaction of thermal
radiation and fluid flow in. the aeousvie approxima-

tion. An earlier investigation is reciewed wherein

the disturbances produced in a semi-infi_dte expanse

_J radiating ga,s by sinusoidal motion or temperature

mriation of a plane radiating waft are ana[yzed.

The one-dimensional un._'teady-flow equations appli-

cable to this problem are generalized to include the

_Ject,s" of a Jreque_Tcy-depende_d radiation-absorpt_;on

eoe[fieient. It is found that a single iTdegro-
differential equation of the same form as that

prez_iously given is obtained. It is demonstrated

that by a redefi_ition of parameters, a pre_iously

given solution applies .for a frequency-dependent

absorptbm co_cient as well as _Jr a glvy ga._'.

The solution appears, in general, as the _.urn _ two

types of harmonic trareIiny wave._: (1) an esse_tially

classical sound wave, but u_th slightly altered speed

and a small amount of damping, and (2) a radiation-

induced wace whose ,speed and dam.ping may be

either large or small, depending on the fl'equeney of
cscillatio_ and the condition of the gas.

The previously given solution for sinusoidal

motion _J the wall is used in superposition to find

the response to an impulsil,dy moeing wall. The

general results are given in the form of i_(tegral
expressions Jor the li_earized dist_trbance qualdities.

A closed-form, approximation for the velocity dis-

" turbance is obtain.ed. R i.sJbund that the main part

of the re,_ponse to an impulsice motion, of the wall
propagate,_ initially at the isentropie speed of sound.

A.s' it progresses, however, the wave becomes' dispersed

and its main part travels at a somewhat ,slower speed.

Ecentually, the main part of the disturbance _hifts

back to the iseldropic .speed. Some componelds of

the response, a._soeiated with the radiation-i_duced

wave system, travd at speeds up to the celocity of

light. As a result, there is a small precursor to the

main wave front. Thi,_" part of the re,_ponse dies out

exponentially with distance ahead of the main

di,_turba_ce.

Tlu_ calidity of se_'eral approximations used in the

derivations is investigated. The second-order equa-
tion, s are dericed to help establish the condition._ under

which the linearized results are a first approximation

to the original nonlinear equatlo_s. ,,In i_t_'(lro-

exponential function appearing in the basic equa-

tions was approximated by an exponential through-

out the present work. Thi_" expedient wa._ introduced

in early solutions of astrophysical problems. The

calidity oJ this approach for _he present problem is

im,estigated by mea_s of a two-term approximation

and by considering the propertie,_ ofan exact _.o/ution

for a grey gas. It is found that the higher derivatives

oJ the flow quantities are not given correctly by the

approximation i_ a small region near the wail.
IIowever, valid results are obtained for the flow

qua_dities themselees everywhere.

The integral expressions representb_g the re,_ponse

to an impul.s'i_e motion of the wall are evaluated

exactly in closed form for a number of ,_pecial

caves. This is done to prot,ide i_:formation on, the

pressure and temperature fields and as a check on

the approximate evaluatio_ of the velocity distur-
bance. Additional cheeks are made by means of

numerical evaluations qf the integral ezpre._sion

.for the velocity.

Finally, the problem of the response to a sudden

change in the temperature _J a fixed wall is con-

sidered briefly. In this case, a small celocity dis-
turbance builds u)_ and then decays to zero. Near

the wall, the gas temperature relaxes exponentially

jrom its original calue to that of the u'all. At

large distance_" from the wall, the temperature carla-
tion is oJ a type characterized by a diffusion proces._.

1
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INTRODUCTION

The present work is an extension of the investi-

gation reported in reference 1 concerning the
interaction between thermal radiation and fluid

flow in the acoustic approximation. This field

of study was initiated in 1851 by Stokes (see ref.

2). His purpose was to show that thermal radia-

tion does not affect the propagation of sound under

ordinary conditions. This accomplished, such
an interaction was not further considered until

recently. Since 1956 a. number of papers on the

propagation of weak disturbances in a radiating

gas tlave appeared.
Stokes' investigation was based on an approxi-

mation appropriate to highly transparent, low-

temperature air. IIeat exchange was assumed to

take place between each element of gas and a
reservoir at the temperature of the undisturbed

gas. (For it brief outline of this work see also
ref. 3.) A parameter that is a measure of the

rate of heal transfer at a given temper'l lure
difference lms been called the Stokes coefficient

by later authors. The acoustic equation resulting

fl'om the inclusion of such a process is a third-

order partial differential equation. In the past
decade two comprehensive surveys on the pro-

pagation of sound in fluids have appeared in the
literature (see refs. 4 and 5). ]n these the treat-
meat of the effects of radialive heat transfer is

based on the Stokes approximation. In reference

6 a method :for eva lualing the Stokes coefficient

is developed which yields useful information.

This work utilizes the correct integral expression
for the rltdiative heat transfer between elemm_ts

of the gas. The solution is assumed to be of the

same form as that resulting from the Stokes

approxinmtion and this leads to an evaluation
of the Stokes coefficient. In 'tddition acoustic

wave speeds and damping constants are found

which compare favorably with the results from

more recent investigations.

So far as the author is aware, the first complete

theory for the effect of radiative heat transfer

on the propagation of sound far from an 3, obstacle
was developed by V. A. Prokof'ev (see ref. 7).

Earlier work in this field by Prokof'ev is referred
to in reference 7. This author considers the

problem of thermally radiating aeoustic waves

in gTeat generality, including the effects of
viscosity and thermal conductivity as well as

the smaller effects (for aerodynamic purposes,

at least) of radiation scattering, radiation pressure,
and the direct contribution of radiation to internal

energy.

In all of the foregoing works, except reference 1,

attention is confined to the propagation of sound

waves in the gas far from 'my boundaries. In

reference 1 an infinite, plane radiating wall is
introduced and taken to be the source of the

disturbances. Following a paltern established in
previous investigations of chemical and vibrational

relaxation effects, the influence of the nonequilib-

rium process under study is isolated by neglecting

other complications. In references 8-11, for

examph', a single chemical or vibrational nor>

equilibrium process is introduced into the govern-

ing equations with all other processes taken to be

in equilibrium. Also, in these works attention is
confined to one-dimensional unsteady or two-

dimensional steady flows with simple boundary

conditions. Reference 1 and the present work,

taken together, represent an attempt to include

flows with radiative heat transfer in this category

of flow fields involving a single nonequilibrium

process. In the case or chemical and vibrational

nonequilibrium, il was found that the same

governing differential equation applies for either
process in the small-disturbance approximation.

It will be seen that the nonequilibrimn effect due

to radialion does not fall in the same class,

although there are certain similarities.

The present investigation follows reference 1

in assuming that nonequilibrium effects from

processes such as molecular transport, dissociation,
vibration, etc., are negligible. Radiation scatter-

ing, radiation pressure, and /lie contribution of

radiation to internal energy are also neglected.

For simplicity, the gas is assumed to be perfeeg.
The radiative effects are taken into account on lhe

basis of the usual quasi-equilibrium hypothesis,
wherein a Boltzmann distribution of excited states

is assumed. The geolnetrieal configuration to be
considered is that of a send-infinite expanse of

radiating gas on one side of an infinite, phme

radialing wall. Initially the gas is assumed to be

at. rest, in a uniform slate, and at a lemperalure

equal to that of the wall. One-dimensional

disturbances can then be produced in the gas by

moving the wall at constant temperature, or by

varying the temperature of a fixed wall, or both.
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]n its one-dimensional character, the present

problem is related to the classical astrophysical

problem of the plane-parallel stellar atmosphere
(see, for example, ref. 12 or 13). For that case,

however, the fluid motion is negligible and there
is no wall. The treatment of radiation in the

plane-parallel case has recently been extended to
include the effects of fluid motion and solid

boundaries (see rds. 14, 15, and 16). In reference

1 the wall boundary condition is generalized, and

the basic equations are used to derive an integro-
differential acoustic equation for a grey gas

(absorption coefficient independent of optical

frequency). This analysis is generalized slightly

in Section I of the present work by including the

effect of a frequency-dependent absorption coefft-

cleat. The resulting linear integro-differenti'd

equation is or the same form as that which applies

for a grey gas. The only difference is that an
integro-exponential function, appearing as an

attenuation factor in the equation for a grey gas,

is replaced by a more complicated function in-

volving an integral over optical frequency. It is

found that the radiative properties of the gas

enter the equation only in their effect on the form
of the attenuation factor and the value of a mean

absorption coefficient, both evaluated at the
undisturbed condition of the gas. To help estab-

lish that the present, linearization is imhedded in

a successive approximation procedure, the second-

order equations are derived in appendix B.

In reference 1, with the aid of a suilahle approxi-

mation to the attenualion factor appearing in tim

radiation (erms, the acoustic equation for a _'ey

gas is solved for the ease ol7 a black wail under-

going sinusoid,fl variations. A similar procedure
in Section II of the present wot'k leads 1o a solu-

tion of the same form for a non_ey gas. This

approximation, wherein an inte_o-exponentM

function is approximated by an exponential, was

first use<l in an early solution of the stellar-atmos-

phere problem (see ref. 12). The validity of tile
approximation for the problem considered here is

investigated in appemliees C and D. Appendix D
contains discussion of a procedure for finding an

exact solution for a grey gas. It is found that in

the exact solution the higher deriwltives of the

flow quantities must be singular at the wall.

The approximqte results do not. reproduce this

effect; however, the flow quantities themselves

are adequately approximated everywhere.

A ]urge h'adion of the present effort goes into

finding the response of the gas to an impuMve

motion of u wall at fixed temperature. In sec-

tion III, the solution for this case is found by

superposition of the sinusoidal solutions using

Fourier-transform theory. The general results

are given in the form of integral expressions for

the linearized disturbance quantities. These are

evaluated exactly in closed form, for certain

limiting values of the variables, in appendix g.

A closed-form approximation for the velocity
disturt)ance at all values of the variables is de-

rived in appendix F, and this is checked by nu-

merical ewdualions in appendix G.

The results from the entire investigation of tile

response to an impulsive motion of a wall at

fixed temperature are summarized ttnd discussed

in Section IV. It is found that the main part of

the resulting wave propagates initially al the

isentropic speed of sound. As it pro_esses, the
wave becomes dispersed and travels .tl a slower

speed, which, fora high gas [emperalure, becomes
the isottwrmal speed proposed by Newton for

sound waves. These findings are qualitatively

simihu' to those for a gas in chemical or vibrational

noneqnilibrium. (For that case, the initial ve-

locity is the frozen speed of sound, an<| tl,e firial

propagalion velocity is that corresponding to

equilibrium.) After reaching the slower speed,

however, the subsequent behavior of the compres-
sion wave in the radiating gas differs front that

associated with the other nonequilibrium proc-

esses. In particular, the main part of the disturb-

anee eventually shifts back to the higher isent,'opie

speed. In addition, some eompone,ts of the

response travel at speeds up to the velocity of light.

:ks u resull, there is a small precursor to the main
wave h'onl at all of ils positions. This part of

the response dies out exponentially with distance
ahead of the main disturbance.

Finally, the problem of the response to a step

variation in the temperature of u fixed wall is

formulated and carried to partial corot>let|on in

appendix H. In this ease, a small velocity

distm'bance builds up and then decays to zero.

Near the wall, the temperature rel,xes expo-
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nentially from its initial value to a final wdue

equal to that of the wall. Far h'om the wall, tile

temperature variation is of a type characterized
by a diffusion process.

In the present world, emphasis is placed on

fluid-d3mamical effects rather than on the physics

that goes into the determination of the absorption

eoeffMent. When evaluation of the absorption

coefficient is considered, however, common g'round

is established with another class of aerodynamic
problems that have received increased attention

recently. In these prol)lems the motivnting
consideration is the ewduation of the heat transfer

to a space vehMe during reentry into the earth's

almosphere. For this purpose, early theoretical

and experimental work on the radiative properties
of air was carried out at the Avco Everett Re-

search Laboratory (see ref. 17 and refs. thereof).

A useful semiempirieal theory for the emissivity
of hot air is also given in reference 18. To assess

the contribution of radiation to reentry heat
transfer, the effect, of the radiation on the fluid

motion was at first neglected (see ref. 19). ]n

reference 20, however, a simplified problem is
solved wherein the interaction between the radia-

tion and fluid flow is taken into account. This

work includes information on other high-tempera-
ture properties of air, which would be of interest

in any attempt to compare the results of the

present work with experiment.

A related problem, concerning the effect of

radiation on shock-wave structure, is considered
in reference 21. It is found that, for weak waves

in a gas at high temperature, the structure of the
shock may be determined by radiative heat

transfer, with neligible effects from viscosity and
thermal heat comluclion. It is a matter of future

interest to investigate the relationship of this
result to the linearized solution for weak waves

found in the present work.

Before concluding the discussion of gas proper-

ties, three other perlinent investigations shouht
be mentioned. Reference 22 contains an excel-

lent review for aerod3mamieists of the basic ideas

involved in the theory of radiative heat transfer,
including an application of quantum-mechanical

theory in the ewtluation of the radiative properties

of oxygen. Reference 23 contains a similar

analysis for a monatomic gas, and the results are

applied in a study of shock-tube flow. Finally,

the results of the present work may find applica-

tion in investigations of very low frequency waves
in the atmosphere. For information on the

radiative properties of air under atmospheric con-
ditions, see reference 24.

The small-disturbance inviscid-flow theory lhat
has evolved over the years takes account of the

effects of viscosity and thermal heat conduction

by replacing shock waves and l)oundm3" layers

with discontinuities. The same procedure is

used in the present work. Thus the gas im-

mediately adjacent to the wall, when disturbed,
may arrive at a temperature different from that

of the wall by virtue of the presence of an opti-

cally thin thermal boundary layer. For super-

sonic or unsteady flow, cumulative nonlinear

effects appear at large distances from the source
of a disturbance even in the lowest-order small-

disttu'bance approximation. Such effects can be

taken into account by a straining of the coordinate

system (see refs. 25 and 26). Presumably the
eoordimtte-stretching process can be carried out

here, but the matter will not be investigated at
this time.



I. ACOUSTIC EQUATIONS FOR A RADIATING GAS

The Iinearized equations for one-dimensional

unsteady flow of a r,uliating gas are given in refer-

once 1. Tile eoordirmte system, shmdng tile a

axis to be perpendicular to lhe bounding infinite,

plane wall, is depicted in figure 1. The semi-

infinite expanse of radiating gas lies in the direc-
tion of the positive z axis from the wall. The

wall is at x=x:(0, allowance being made for its

motion. In the present work, the gas will not

be assumed _,re3<"* as in reference 1, but the wall
willbe considered black. In that case the acoustic

equation of reference 1 prior to the inclusion of

the grey-gas assumption is

_'_ _'_, (Y-- I) O (1)
5t 2 a_ bx 2 p_,

where _, is a potential in terms of which the

perturbation velodty, pressure, temperature, and
density are Wen by the relations

_,'=-- (2)
bx

p' =- o087 (a)

a_=-], _,at _ -r _V (4)

5p' b"_'

The prime is used to denote a perturbation

quantity. The subscript 0 denotes the condition
of the undisturbed gas wherein the gas is at rest,

in a uniform state, and at a temperature equal

to that of the wall. For example, m is the gas

density in the undisturbed state, and o' is equal
tO P--Po. The symbols a0, % and R have the

conventional meanings so that it0 represents the

isentropic speed of sound in the undisturbed gas,

"/the ralio of specific heats for a perfect gas, and

R the gas constant. All symbols are defined in
appendix A. A derivation of equations (1)-(5)

is eontained in appendix B.

The quantity Q appearing in equation (i) is

the net, r'tdiant energy al)sort)ed by the gas per
668944--63--2

unit volume and time. In general, Q can be

analyzed in terms of its components Q, for par-
titular optical frequencies v, where

q=£= Q/_ (6)

An expression for Q, is derived in reference 1 for

quite general properties of the wall and the gas.

The subsequent deriwd.ion there is specialized to

the case of a g'rey gas. In the generaliz_ttion to

the case of a nongrey gas, to be treated here, the
wall will be considered black. The appropriate

e.vpression for Q_ can be obtained by setting the
quantity e_ eqmd to one in equations (20) and (21)
of reference 1. The result is

(7)

Equations (6) and (7) have not yet been linear-

ized. They will be rearranged and linearized to

obtain an expression for Q in terms of ¢ for use in

equation (1). Equation (7) applies in particular
to l])e case of a black wail, T,_ being the w_fll

temperature. The quantity c_, is the absorption

eoeffieient of the gas at the radiation frequency v

% >-..

Uw=Uw{t) :Velocity of wall

T_,=T_, (t) =Temperature of wall

Fic,vnE 1.--Coordinate system.

5
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as defined, for example, in reference 22. The B_(T)afl_
function B_(T) is the Planck function

Ot'_

1 fo _ B_(T)d_
B_(T)= eh,/kr 1 (8)

_x x A, Aand E_(z), E2(z) are the integro-exponential _= ,_(x)dx
t w(t)

functions

_01E,(z) =L _= -2e-z/"dg' n= 1,2 (9)

For a discussion of the properties of these func-

tions including a number of integral relations, sea
reference 27.

The quantity n_ is tile optical depth from the

wall for radiation of frequency v, and is given by

z A A_,= o, (x),lx (10)
• w(t)

The temperatures T and T that appear in equa-

lion (7) are the gas temperatures at the positions

corresponding to n_ and 71_,respectively.

A useful alternative form of equation (7) is the

relation found from it through an integration by
parts

Q_:27ra_{[B_(T,_)--B,(T)l E

- _ ~

--, d_ -

(11)

It should be noted that the partial det_ivative
bT/bg, is used to indicate that t is heht fixed. A

further rearrangement of this expression for Q,
will be made such that upon substitution in equa-

tion (6), the integration over v can l)e carried out.

In the grey-gas approximation (_ independent
of v), an average ahsort)tion coefficient c_ and a

corresponding optical depth n are introduee(t to

replace a, and _. The method of avera#ng is

arbitrary, depending on the weighting function.

According to reference 16, thc Phmek mean

al)sorption coefficient, and oi)tieal depth are de-
fined by the relations

(12)

(13)

When c_ and v_ are repla('ed by a and n in equa-
tion (1 1), and the result is substituted in equation

(6), the integration over _ can be carried out ex-

t)licifiy by an interchange in the order of integra-

tion. This is so because the only remaining p
dependence is in the quantity B_(T), given in

equalion (8).

The grey-gas approximation will not be used in

the following derivation. In the analysis of a real

gas, for which a, varies with frequency, the
integration over _ cannot be dispensed with so

readily. However, it will be seen that the averazed
quantities a and n are still convenient wMables for

the more general case.

As a first step toward removing the v dependence

in equation (11), we note that, for fixed , and t,

there is a functional relationshi 1) between n and n.

so that, by a transfi)rmation, n, era, be replaced
with n as the variable of integration. For this

purpose, the following relations can be established

by comparison of equations (10) and (13).

O_ v

d_,=--d_ (for fixed v and t) (14)
O/

t)=.l' Cp0o,_d9 05)

It, follows that

Equation (11) can then he written as

Q,=27ra_ ( [IL( T_.)- IL ( T) I,=o]E_(n,)

f0 67".-, d_ ' 0_ 'I'

+,(, = dB"(7_)dTE2('_--V,) bg d_) (17)
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The integral over v eouhl now be completed

except for the , dependence ill the arguments of

the E= function. In fact, this call still be clone in a

small-disturbance approximation. This comes
about because when equation (17) is linearized,

the v dependent factors no longer depend on the

temperature variations in the flow fieht. Then the

integration over v can be carried out once and for
all.

Ill the acoustic approxinmtion Q, and hence @,

is needed only to lowest order in the deparlure

from the undisturbed gas condition. Prior to a

disturbance, the gas is at a uniform temperature

equ'fl 1o that of the wail. It follows that.
bT

B_(T_)--B(T)I_=o and _ are perturbation quan-

lities. As a result, to lowest order, the other

factors in each term of equation (17) can be

ewduated at the undisturbed condition of the gas

(subscript 0). To accomplish this, the following
relationships can be established by power series

expansion

.. d B_(T0)
I_,(T)=B_(To)+ tiT2- T'÷O(T'_) (18)

__ ;T.,±dB,(To)
B_(T_) .... ,'O:T _ T;+O(T "2) (19)

where
r'-=r--ro, r;=r._--ro

Since To is constant, differentiation leads to the
relations

d B_(r) riBs(T)dB,(ro)__O(T,)
dT dT' dTo

OT DT'

Combination of these relations yields

B_(T,_)--B ;T_ dlL(To) (T, T,],_o)+O(T,2)
_ j i,=o-- dT o -,

dB_(T) 5T dB,(To) _T' __O(T,2)
dT b_-- dTo _

The symbol 0(T '2) is intended to incJu(te second-

order terms or lhe form T' i)T'
and T_-'. The last

two expressions can be used to write equation (17)
as

_,l B_ (To)
Q_ 27ra_° L _ E2(n_)(T'_--T'[,=o)

_o _T' ., dB,(To) E2(,7.--_.) _-- d3-. dTo

_ dIL(To) _7"-- • - - ,r_+o(r '_) (20)4-. dTo E.,.(n, n_)_

The quantity dB_(To)/dTo is constant, since To

is constant. Therefore dlL(Tu)/dTo could bc

taken ouiside the integrals. Instead, in order to

consolidate the _ dependent factors in each term,

c%, which is also constant, will be taken inside

the integrals in the next rearrangement of equation
(20).

The relation between 7/_ and _/ is also needed

only to lowest order in T'. Thus equation (15)
can be written as

n,= -- d, +O(T')
• O/0

Since a_0/a0 is consiant, it can be taken outside
the integral and this becomes

OZ_,o

['_ ^ ' =--,_+O(T') (21)n.=- - d_+O(T ) c%
OlO . If 0 _0

Substitution of equation (21) into (20) and
re,trrangement leads to the expression

dB_(To) _(0% )Q'=2_-a'o d_ I(,, \--ao n (r;--r'l_=o)

, dB,(To) ~ bY'

(22)

dB_(To) (a'o )The function 27rc% dT-_ E'.,. \ao- z appearing in

each term of equation (22) now contains all of

the v dependence. The subscript 0 indic._tes thats
this function is to be evaluated at the umlisturbed

condition of the gas. The integration over v can

therefore be co_q)leted for all time, without con-

sideration of the temperature variations associated

with particular problems. To this end, the func-
tion F(n) is defined by the relation

cF(,)=f( dTo ,,ao
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The constant, C, can be chosen so as to obtain a

formal similarity between equation (27) to be

derived here and equation (33) of reference 1

(result for a grey gas). This is accomplished by

imposing the requirement that, when a_o is in-

dependent of v (and hence equal to ao), F(7)
will be equal to E2(7); that is,

_ dR_(To) E47)d,CE..,(7) =. 2_-a0 dTo -
or

C= 2_r'x°£= dB_ (T°) d_=2rw_° -dd, fo=dToB.(To)dv

To ewduate the last expression, use can be made
of the demonslralion in a standard textbook that

the Phmk radiation law (eq. (S)) leads to Stefan's
law; that is

_ B_(T)dv=O- T _ (24)
71"

where a is the Stefan-Bollzmam_ constant (see,

fl>r examl)h, , ref. 28). By differentiation, it
follows that

C=S_T]_o (25)

Use of this in equation (23) leads to

£_ e%dB_(To) E,(aZo )F(7; To)=& _o dTo \c_o _ dv (26)

titre the parametric dependence of F(v) on the

temperaturc of the undisturbed gas, To, is indi-
eale(t. IIenceforlh this will not be done.

When equation (22) is substituted into equation

(6), and the m'der of integration interellanged, the

result can be written in a form containing the
combination CF(z) in each term by the use of

equation (23). Taking C outside the integrals,
and replacing il by means of equation (25) finally
leads to the result

Q= 8aT_o IF(n) (T'-- T'i, =o)

F(5-7) V/g-

(27)

where terms of order T '2 are neglected. This

result is formally identical to equation (33) of

reference 1 when the latter is specialized to the

ease of _ black wall. The only difference is that

the _(7) function, resulting front the grey-gas

approximation in reference 1, is here replaced by
the funetiml F(7) defined in equation (26). The

definition of 7, equation (13) is the same as that

used in reference 1, where it appears as equation

(22).

The foregoing procedure can be extended to

higher order. It is then necessary to define addi-

tional functions, similar to F@), which involve

integration over v of integrands containing higher
derivatives of B,(To) with respect to To, as well as

derivatives of (a,/a) and (a,/p) with respect to T,

also evaluated at T= To. The second-order equa-

tions are derived in appendix B.

Equation (27) is now in a form suitable for

combination with equations (1) and (4) to ob-

tain a single expression for the potential %
but in addition a relation between 7 and x is
needed. This can be found from the definition of

7, given in equation (13). To lowest order, this
beconles

7=_o[x-x=,(t)] (2s)

The earlier relations, to be used in the combina-

tion, are

_0 , _o_ (_,-1) Q (1)
bt _ a'_ _-- p,,

5t It \O_ _ _/ (4)

Equation (2,g) can be used either to replace 7
in equation (27) or to replace x in equations (1)

and (4), retaining 7 as an independent variable.

If the results are extended to higher order, ,1

difficulty associated with the transfer of boundary
conditions is rLvoi(ted by the use of 7 as indepcn(l-

cat variable. That approach is used in appendix

B. However, such complications will t)e ignored
here, and x used as a variable instead of 71- Then

Xw(t) is taken to be a small quantity such tint{ a

displacement through this distance at any point
in the field leads to higher order terms which are

neglected in the first approximation. As discussed

in reference 1, this is not a uniformly valid ap-
proximation bec,mse of the infinite derivative

of the E.,(z) function at a zero value of its argu-

ment. In the present impulsive piston problem

there is a further difficulty arising from the fact

that x_(t) will become large at large lime. It

can be shown that the result obtained by ne-
glecting x_(t) is valid to lowest order (for values of

not too large) if x is measured from the w,fll

rather than from a fixed origin. At large x, a
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straining of coordinates is required to render the

results valid as in any acoustic theory. These

points are further discussed in appendix B.

Substitution of equation (28) into equation (27),

with Xw(0 equal to zero, yields

{ ' ,Q=8aT]ao f(aox) [r.(t)--T (t,O)]

- £[_0(x-_)] d2+ F[_0(_--x)] d_

(29)

Substitution of this into equation (1) and differen-

tiation with respect to time leads t.o a relation
b5T'

cont.'dning bxbt Differentiation of equation (4)

with respect to x relaIes the latter quantity to an
expression in terms of _ so that T' can be elimated.
The result, is

/'b_, a2 b_"_ 8(-r--1)_T0_o_of
a7 \_- o_/ _ 1. --F(.0_)

z--fi-+[_ _ _/::oj

- fo:C:o(z-_)l-_-/_:_-_\ot: 4_'_'__/_

+ f[a0(2--:)]_ _-_ _).xf (30)

This equation, derived for a gas Mth an arbitrary

dependence of absort)tion coefficient on frequency,
is formally identical to equation (38) of reference 1,

when the latter is specialized to the case of a black

wall. The only difference is that the E2 function

of reference 1 is here replaced by the function F,

defined in equation (26). A result not restricted

to the ease of a black wall can be obtained by
replacing the E2 function with lhe F function in

equation (38) of reference 1.

The boundary eondilions associated with equa-
tion (30) are

b_ (_, 0) =u_(0 =given function of I (31)
bx

T_(t) =_ven function of t (32)

_(t, o_)=finite quantity for all t (33)



II. APPROXIMATE SOLUTION

In reference 1 solutions of equaticn (30) corre-

sponding to sinusoidal variations in wall velocity

and temperature were obtained for the case of a

grey gas (F(z)=E.,(z)) by approximating the E_
funelion with an exponential. The same proce-

dure ctm be followed ill the general case, when F(z)

is not equal to E2(z), by setting

F(z) _me-': (34)

The constants m and Jt can be chosen, as in refer-

ence I, by making the approximation exact in the
Rosseland limit of strong absorption and by further

imposing _tleast squares fit. To obtain the Rossc-

land approximation correctly, it is necessary to
match the first moment as follows:

• _F(:.)zdz=. me-"'-zdz=_ (35)

It can be shown that this is the correct criterion

from equation (29). To do this, first integrate
b2T'

the integral terms by parts so that -_2 appears

under the integrals. A limiting process with a0

going to infinity then shows the result to be pro-
portional to a double integral of F. By a partial

integration the latter quantity can be expressed as

the first moment of F (see ref. 29).

Substitution of equation (9) into (26) and that
into the last equation yields

'n 2=4_o , =o, =oa-_" d To

,_'=o [ a_o _ dudvzdz (36)exp -_o

With an interchange of the order of integration

the z and _ integrations can be carried out to
obtain

1., _ dB_(To)/dTo du (37)
Tl_ _ l_" f 06"0

;_ do o_o 4_T_

10

FOR AN OSCILLATING PISTON

When this is substituted into equation (34), and

the value of n determined by a least squares fit
of the result to equalion (26), it is found that _

nmst satisfy the relation

f_ / _" fo _ dB;'dTodB,_ d l o %> du-- 4 . dv : 0

7r 7r ct"Vo •

(38)

If a_o is independent of v, it can be seen that this
reduces to

4

l+n

or n=1.562 as obtained in reference 1 for the

case of a _ey gas. In that case equation (37)

] 2
reduces to m=_ n , also obtained in reference 1.

In the general case, when the dependence of a,0
on frequency is known, equation (38) can be
solved numerically for _. The constant m can

then be evaluated using equation (37). By rede-

fitting the quantities fl and K appearing in equa-

tions (57 % h) of reference 1 as

an (1

fl=n a0a0 (39)

K-- 16 (v-- 1) aT;] m (40)

one can show that the results of reference 1 in

terms of fl and K apply for a real gas when m and

n are determined from equations (37) and (3S).

The validity of the exponential approximation is
investigated in appendices C and D where it, is

shown that the resulting solulions lead to wdid

approximations of the physical quantities eveI3--

where. In a small region near the wall, the

higher derivatives of the physical quantities are
singular. The exponential approximation does

not reproduce this effect.
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The results from reference 1 for the case of an

oscillating wall are the following:

u(t'x)=a--°Re (EclcLexp(ClwX'_7, ao /

+ c2Cz exp \(-=--c"aac°X/_l_7 e' o,t} (41) where

Re [(clC, +c2C_)e'_'] --771''(t)
(/0

C,

+(14)(/5 • J To

ao='yRTo

Equation (44) it the solution of a fourth degree

characteristic equation which results from sub-

stituting a complex exponential form into the

integro-differential equation. The derivation of
these relations it cont'fined in reference 1 and

is further discussed in appendix C herein.

Equations (41), (42), and (43) apply when the

wall velocity uz(t) and the wall perturbation

temperature T_(t) are sinusoidal functions of
time with radian frequency w and art)itrary phase.
_7_en this is the ease, equations (42) and (43)

can be solved for the comI)lex amplitudes C_ and

C2. Equation (41) then represents two damped

sinusoidal traveling waves. The damping con-

stants and wave speeds are determined by the

complex constants c_ and c_. These are given
in terms of the radian frequency co, the basic

physical parameters, and the approximation con-

stants m and n by equations (39), (40), and (44).
The variations of the damping constants and

wave speeds through the whole range of pa-
rameters are discussed in reference 1. At an

example of these results, the wave speeds Vl and
v2 arc plotted in figure 2 as functions of the pa-

rameter _o/no_oao for 3,=7/5 and K=4. In the

figure, the dimensionless quantities v_/ao an,l

0.01 v_/ao are plotted to avoid specifying ao which

is lhe isentropie speed of sound in the undis-
turbed gas. It is seen that v, is equal to ao at

low frequency and also at high frequency. At

intermediate frequencies the wave speed ap-

proaches the isothermal sigmd velocity ao/v'_.

11

(42)

(43)

(44)

Since the speed of this wave does not deviate

greatly from the isentropie speed of sound, it
has been referred lo as a modified-classical wave.

The other wave speed, v_, varies between zero

and the velocity of light (taken to be infinite),

depending on the frequency. The term of equa-

tion (41) corresponding to v2 has been referred
to in reference 1 at a radi_ttion-induced wave.

The wave speeds are determined from the values

of the complex constants c_ and c_,by the relations

vJao=-[Imaginary Part (cl)] -1 (45)

.r2/a0= -- [Imaginary Part (c2)] -_ (46)

Figure 2 was plotted from dat_ obtained by
electronic machine evaluation of equations (44)-

(46).

,2 ]

i.o __ __1/@_ .................................

,4 - / v2 (Rodio on induced wove)

.2 - / 100%

O0.oI " 0,05 O.I 0.5 1.0 5 I0 50 100

_/nao%

FIGURE Z--Wave speeds versus frequency of oscillation.



Ill. IMPULSIVE PISTON SOLUTION

The response of a radiating gas to an impulse
motion of a wall is governed by the intone-

partial differential equation (30). With the

exponential approximation (eq. (34)) of the
attenuation factor F(z), this is

Rpo .ore

dt \_t -y 8_xV_:oJ

(47)
,,._ b'2kbt- v _-7d) J

where _ is a potentiM from which the gas per-
turt)ation velocity, pressure, temperature, and

density can be found using equations (2)-(5).
The boundary conditions to be satisfied are

_--¢(t, 0)= u.w(t)= _ 0 (t _0)
_x L° (t>0)

(48)

T,_ (t) = (_; (t>0)(t<0) (49)

The initial condition

,,(t, x)=O (t<0) (50)

is also imposed.

In the results to he given, the pertuiq)ation wall

temperature will be taken zero for all lime (O=0)
and the wall velocity at t>0 will be considered

constant. However, the required relalions for

more general eases will be developed up lo a point.
Solutions corresponding to general time-tic-

pendent boundary conditions can be el)rained by
superposition of the oscillating piston resulls sct

(imam in the previous section. As they stan(t,

equations (41), (42) and (43) apply only when
uw(t) and T_(t) are sinusoidal fimctions of time

with radian h'equency w. For the general time-

dependent ease, the right side of equation (41) and

the left sides of equations (42) and (43) shouhl be

12

integrated over all values of c0 from zero to co as
follows:

u(t,x)-=_ Re f0 _ (c,C,e_,_l_o+c,2C2e_,'°_l_O)e'_tdw

(51)

Re[" = (c,C,+c_C2)e_'otdw= Z u_.(t) (52)
do ao

R c ( --ifo_ [(1 -[-_) (_-_) C,-4-(1 -{-_)

e_tdw _T'_(t) (53)

It. is expedient, to make use of Fourier-transform

theory in evaluating C_ and C2 from equations (52)

and (53). To this end, the Fourier transform for

an arhiirary function .f(t, x) is defined by the re-
lation

x)--;. J_o](t, x)e-"_tdt (54)

where the bar over the function indicates that it is

a transform. The inverse relation

'FS(t, x)=_ ](,o, x)_'_'d,o (55)

follows (see, for example, ref. 30). This definition

differs from the conventional one in that the t--i)

is usually associated with the inversion integral
rather than the transform as it is here. The rea-

son for the prescnt choice is to avoid the necessity
of changing the sign in the appropriate places in

all of the results of reference 1. V_']mnf(t, x) is

real, it can be stlm_m lint! /.he real part off(w, x)

must be an even function of _oand the imaginary

part odd. When.f (t) is also zero for t_0, equa-
tions (54) and (55) can be written alternatively as

J (t, x) = R ere _ ](_, x) e' '_'d_ (57)

By choosing j'(t, x) in these forms to be Z u_(t) and
fir)
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comparing equation (52) with (57), it is seen ttmt

equation (52) corresponds to the relation

c,q+c._G= _- _,, (o,) (ss)
Go

Similarly equation (53) becomes

(3), (4) and (62). The results are

.f;p'(t,x)-- P" i (CSl'Ji"°+C2e_2_"l"°)e_tdoa

f/=--p0 Re (('re q_'_/%-- C2e_:_i"°)d%ho

(63)

and

• F'+0+D0h)4 ¢? T' ( t, x)----_ ('re c''°_i"°

When u,_(t) and T',(t) are given functions of

t that are zero for t<0, lheir transforms can be

found according to equation (56) and are given 1)y
the relations

_,_(co) =1 f]> u_(t)e-_'dt (60)

T;(_o)= T'w(t)_-'_'_lt (61)

These results, subsiituled into equations (58) and

(59), lead to lwo simultaneous equ'ttions which

can be solved for the quaNlities C_ and C2 needed

in the integral expressions for velocity, tempera-

lure, and pressure, lo be given in equalions

(62) (64). The quantities e,, e.,, and fl appearing
in equations (5S) and (59) are the same functions

of o_ as in the oseillalin_ piston solutions and are

given by equations (39) and (44).

The integral expression for the velo('ily, equa-
lion (51), can also be wrillen as

(/0 f0 _=_ R e (cl ('¢_' _I,o+ c2Qc _2_*i.o) e_,_,doo (62)

The second equality follows fram lhe sym,netry
of the integrand.

Similar expressions for lhe pressure and

tenlpera.l,ure can be found using equations (2),

+(1-t-_) Cee_'a','"i",] e_'_'doo

=--ToRe :;o [(1 --('¢. .... i,o

}n the derivation of these relations, differentia-

lions llli(t integn'atious wilh respect to t and x are

taken inside the integral with respect to :o. Also

use is made of the fact t]lat the l)erlul'lmlion

quanlities are zero ill 1_0. These slel)s can be
justified only under ('e,'tain eondiliolis wliieh

require discussion. II is necessary thal the

integrals with respect to o_ be inlegrable al least

in the sense of the Caue]ly princil>al vahie. For
exanlple, if the fulletions u,,,(l) and T',<,(t) _'_resuch

1}lal the |rlulsfornls _(c_) or T',,(co) are singular al

any point on lhe palh of inlegralion (the real

axis in the colnplex _oplane), then these singulari-
ties musl be cireunmavigated along infinilesimal
semicircles eilher above or below the real axis in

lhe eonlplex c_ p]ane. In the present problem, it.

can be shown lhat the palh of inlegl'alion in
equations (62), (63) and (64) should pass below

any singularities on the real axis to insure l]la| ihe

])erlurl)alion quanliiies will be zero for t<0. The

delnonslralion is sonlewiial, conlpli('aled liy llie
existence of branell points. Equation (44) can be
wriilen as

i 2 2 2 " -" 2 2 2 2 " _ I "l!c, )r V-(<o_-.--<_-/Tm._<,.0<o)-r _(_ -, ,_oooT:,s-;.<_o.o<o)+4. <_o_,<,<o(<_-,_r{,,<_,,<zo,v)
c, .j - -L- 2_o(oo--iIO*,a¢+o/7) J (65)

66S944 63--3
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The quantities C1 and Ca appearing in the late-

grands c'm be found by solution of equations (SS)
and (59). Upon replacing the quantity _ with

the aid of equation (,39), the results arc

Cl=

( ?)- 1+ -_,o, oa,,+co</",o T,,

1 -t-_J \nc_oa0"cecl] co-- 1 -{- \Jweu%+coc2/cl

(66)

( _ cG / n_,oao "_ v- , , . T'=(o,)

(aT)

It can be seen from equation (65) that there ,_re

six branch points in the expression rot cl and c.,.

Three of these are in the upper half of the coml)lex

_ophme and one at the origin (see sketch).

I'_Of

• ...... •

• ........ 0

t,aJf

will specialize to those cases where _(e) and

T',(co) are analytic in the lower lmlf-phme. Then,

altogether, one can conelude that the integrands

of equations (62)-(64) are amdytic in the entire

lower half-plane, hut contain singularities and
branch points on amt above the real axis.

The Cauchy integral theorem can now be used

1o show that the pall) of integration in equations

(62) (64) shouhl be taken helow any singularities
on the real axis to insure that the perturb'ttion

quanlifies will t)e zero for t-Q0. Let us assume

that the properties of _7_(co) and T_,(w) are such

thai the parts of the integr'mds excluding e"°_ in

equations (62)-(64) are zero at infinily. Then for
t less iimn zero, each line integral involved can be

closed with a semicircle at infinity in the lower

hnlf-phme without adding anything to the wdue
of the integral. The resulting closed contour will

not enclose any poles so long as the path of

inh, gralion along the real axis is laken to be t>elow

any singularities on the real axis. In that case

the wdue of each of the original line integrals is
zero for t<0.

We will now specialize to the case of impulsive
motion of the wall with wall lemperature held

constant. The boundary conditions for this case
can he written as

r o (t<o) (6s)
u,,,(t)-- _lim Ue-" (t>0)

The remaining two are in the lower half-plane.

The quantities c_ and c2 will be single-valued
functions of co if a branch cut is inirodueed con-

neeling the four branch poinis on or above the

real axis, and a separate branch cut is introduced

connecting the two branch points in the lower

half phme. In the following, the properlies of
c_ and ca in the lower halfiplane only are of interest.
It catl be seen that c_ on one side of the branch cut

in the lower half-plane becomes c2 on the olher
side and vice versa. From equations (66) and

(67) it, follows that the same is true of C'_ and (-;.

Since the integrands of equations (62), (63), and

(64) are unchanged by an interchange of the suh-

scripts 1 and 2, the branch cut in the lower half

plane can be dispensed wilh. In general, there

may be additiomd regions of nonanalytieity arising

from _(co) and T;(co). For the specific problem

to be considered, there are not. At this point we

Tg(t) o (all t) (69)

Substitution of these relations into equation (56)

yMds

_,(co)=l-u lira f® c-'te-'=qtl (70)

and

_(co) : 0 (71)

Evaluation of equation (70) leads to the result

_w(co) =Iuli,,, ( 1_=--i U• ,0 _,_+ico/ mo
(72)

At this point, it is helpful to note that there is a
basic similarity in the problem. By the intro-

duction of a set of dimensionless variables, it is

possible to present the results in a form which is

independent, of the wdues of the radiation absorp-

tion coefficient, o_0, tlle approximation parameters
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rn, n, and the gas properties ao, R. An appropriate

set of similarity varM}les is the following:

Using these equations, the expressions for the
velocity, pressure, and temperature become

2 v("_)=--_, b%e _ %_1: ='9e "-- (78)r=_ f na0a0t (73) U _ ,

_=_/_o_

K)y 16_,,/_- (,--1)_= _/___ , _,+1

v+l nauao TU

m _T_

n "Y_pcao

(74)

(75)

(76)

(j=1,2) (77)

p'(r,_)__lpoaoU 2_r J._(®_ \("!teq'_+c, :: "e_"-"_)e/_'d_ , (79)

RT'(r,_)=laoU 2_-,,__'_[(1-F_) A_."eq"'c,

The wave speed parameters e,, c2, 'md the wave
amplitude parameters A_, zb are given by the
relations

I 2 • y-_-I '_ v(_ 7#)]i/2::} ==_ --(,2--iy_'v--Y--+21-)± _/(v2v(v_ilc)--,Tl:v--T) +4 (Y-+2 1) (81)

// - 1
c_ 2

A:---, [1 L, +?J LI+,/a_ _,J_:

(82)

rl _{__e__]rl_{ _._,/_ vQ1 c,,//F1-r,-_] rl_ II_'/y_I "QI]
" :-- c]

[I_)j _--/., LI__I /_L' ;/,,i,,,L L' . ,JJ
(83)

As discussed earlier, the ]ine integrals in equations

(78)-(80) should be distorted from the real axis

near v=0 so as to pass below the singularity at

the origin.
The t'tsk before us now is to evaluate the inte-

gTals in equations (7g)-(80). This can be done in
closed form only for certain limiting eases or by

approximation. The methods used will be demon-
strated for two cases in this section, and the re-

mainder x_-ill be treated in appendices E and F.

One question which arises is whether discontinu-
ities occur in the flow field as a result of the

discontinuous wall velocity. Such a discontinu-

ity might occur at r=0. It will first be shox_m
that this is not the ease. For this purpose we

shall concentrate on the expression for the veloc-

ity given in equation (78).

It, was demonstrated earlier by means of con-
tour integration that equation (78) will lead to

u/U--O for r<0. Therefore, the quantity c _ can

be replaced by e_"--e -t'l'I since the added term

wi]l be zero except possibly at r=0. Then equation
(78) can be replaced by

'u(r,_)__ i (A:_,,t+AS_,_)(e_,_e__,I,t) d_
U 2_r ® v

{o .<o,= 1 _ (A_e,t,_+Aae,_,_) sin vrdv (r>O)
_. _ --7-

(84)

It can be seen that the real part of the integrand

in this expression is an even function of v, and the

imaginary part is an odd function so that equa-
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tion (S4) can be written as

, 2_0_"u(rY_)--_r ,c Re (Aiec1_+ A,2eC2"_) sinv vr dp

(r>0) (85)

For slightly positive values of r, this can be
written

u(0+, ,_) 2 lira II%l'_]h'(AfJ"t+A2e<'_)sill Pr_ dp

U re .-m+ do v

r,+_2 lira ile(At_.c,.__l_AS2_, 9 sin vr dv (86)
7t"r_0+, I#7 v

The integral is broken inlo two parts here lo pro-
mote simplifications in each part. The point or

division is, to some extent, arbitrar37. By ex-

pansion of sin vr in a power series and use of the

fact that the quantily Re [A_ exp (e_v_)+A_ exp
(eu_)] is bounded, it can be seen that the first ternt

in this expression for u(0_, _)/U is, at most, pro-

portional to _ff mt,ltiplied by a convergent series

and hence vanishes in the limit as r goes to
zero. Then equation (86) becomes

flv(0+' ()=2 lira _ ._ _ ._. sin ,,r
U _-,->o+. iv7 Re(Av ' q-_:l_e_ )_7-dv

(87)

If the quaniily Re(Alec'_@..lS_) is expanded

for lai'ge ,, it can be seen that only the lowest

order t=erms can contribute to the integl'al in the
]trail.

For laler use, t lw wave speed parameters eI and

c._>,given in equation (<_1), cau be partially ex-
panded for both large and small . in lhe forms

e, --i ll--i (3`--l)k_ _

L v2__ivkvq 3'+ 1
2

c- l_-+iS/'-' I /(_-l)z._

a----_t_("Lik) LI} '" vz- iykuq y+ I
2

"/@IN . o = . 1,e

=2-) (?-1)-1-_-..fo(._) (s,,,,(li_) ]

(v<2--i-v_:_+3`_ly +
--_ ...... ; _= L0(v -'_)(large;,)l (s9)

J

This restllt is obtained by rearrangement of the
quantity under the inner radical in lhe form

(d-'--i@v--_)_+ 4 (Y q21) J,(_,-- ik)

z • : 3'@1 a 3"-[-1"
=-(,--,3`*v+ 2 )+4(_ )(y--l)ib,,

and by expanding at)out a zero value of the second

term on the right. Furt.her expansion of equations
(88) and (89) for large , leads to the relations

e'=--i v--a k t-O(_ '')2_, k'finite (90)

Subslitulion of these expressions into equations

(82) and (S3), and expansion of the result for large
v yiehls

(1)A_:I-k0 _;:_ ]c finilc (92)

(')A..=0 )5 k finite (9a)

Use of equations (90)-(93) in equ,tion ($7) leads
to

.u(0-t , _)= li,,, 2 Ree_<%-(_')_:_
g T_a+re, t_G

_1 @0 (!)] sillvi'_r 'h'

It can be seen thai the contribution of the form

(')containing 0 _, is zero in the lilllil as r goes to

zero and the integral can be writlen as

lira -2 _= =--c°s (v}) sin (,r)_ dv
r :,0+ 71-, l_ r

By the same procedure "is before it follows that.

the eontril)ulion to the inlegral fl'Olil this integrand
in an interval 0 to IIV¥ is zero in the liinil. Add-

ing this interval, again llSillg" the s3mmleti'y , ll.ll(I
expressing the cosine and sine in exponential form,

the integral can be written as

u(0 _-, _)
U =e-('@)k_ ,+o+lhn(--;)4_r j"_.

II
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If we take lhe line inlegTM to pass below the
origin, each exponenlial term can be evaluated

separalely. This is done t)y closing the contour

with a semicircle at infinity in the lower or upper

half plane, depending on tile sign of the argument

of the exponential, and using the CCl]('ulus of
residues. The result is the expression

To evaluate this, the va.h|e of _ nlust be specified

rehttive to r before taking the limit. When this
is done, it can be seen that

u(o+, _)= f 0 0<_<_
(94)

t _ \ 1 0<8<_

Since the expansion for large v used in lice deriva-

tion is wllitl only for finite k, this result may not

apply in tile linlit as k->¢o, aIlhoug|l it does

apply at all other _alues or k. In filCi, the same
result can be obtained ['or infinite k, but the proof

requires a more detaile(l procedure whic|l will not
be given here.

We have found that the gas velocity is zero
at slightly positive vah|es of r except at the wall

(_---0), where the gas velocity is equal to the wall

velocity. Correspontling results e'm be found for

the perturbation pressure and temperature.
These results are

v'(o+:_)=/o 0<,<_ (9_)
po{_oU k I 0<_<r

RT' (0+, _) = f 0 O<r<_ (96)
aoU /. (v- 1)/v 0<_<

By a sinlihtr procedure, it, can be shown that

jumps in velocity, pressure, and tempm'ature

occur at r=( for all finite _. For the velocity, the

quantity to be evaluatetl is

f°=lim (e'_'-- e -'_, )
e--t0 , co

p

17

The results are

(97)

Iiln F ]t,;_-@_' _)

, _l)L p_floU OoaoU-]=exp[-( 2 )_'_]

(9s)

It,,,,_+,,LFRT'((+_'(),_ I?T'((--_ _)]__j

(99)

Equations (97)-(99) indicate that lice jumps in

velocity, pressure, and temperature at r=(

decay exponentially with distance from the wall.

This finding is qualitatively sinlila," to ttm t for a
gas in chemical or vibrational nonequilibrium in

the 'tbsenee of radiation (ref. 31). IIowever,

in the present case where the effect is due to radi-

alive heat transfer, the disturbance is not zero
aheatl of tile jump (r_) as it is for chemical

nonequililwiunl. This will be demonstrated hirer.

In reference 10, an expression is derived for the

velocity fiehl far from the wall in the ease of

chemical nonequilibri_m_, t The same can be done
in the present problem by expanding the late-

grands in equations (78) (80) for small values of v

and demonstrati|lg that the contributioi! to the
integral from other values of v is zero. The

ewduation for this and for other limiting eases is

given in appendix E.

To obtain a qualitative view of the over-all

flow field, either approximation or machine
computation must be resorted to. Both methods

have been used to ewfluate the velocity disturb-

anee for the present problem. An approximate

closed-form solution is derived in appendix F.

i Ill references I0 and 31, the l,roblem treated Is that of tile steady supersonic

flo_ past a wedge. For ehemieuI or vihrMional nonequilibrium there is a

direct analog)- with tile corresponding one-dimensional unsleady flow prob-

lem. Strictly sl>eaking , sm_h an analogy does not exist in the t'a_ of radiative

heat transfer because of the direcllonal properlies of the radiation intensity.
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Tile result is

u_ b-, _)=o (r<o)
U

_'--_(_,_)=_- (1-_ -Xt°_)[_,.f {'_-_+c,.f (-_÷_'_7U \2., X/ \2_'X]._]

+21(e-'xv_--e-X){erf[ b(T-_)--X-]2,_ J

+e, f
L ._x ]J

, , (_-_)7
_-x[_t_l (_>o) (loo)+_

where

X= (_,_-- 1))['_ (101)

b= k/2 + _l-(k/2)_-_ I (102)

Tile over-aU velocity field will be described in the
next section.



IV. RESULTS AND DISCUSSION

Equation (100) is a closed-fm'm unifornfly

v,lid approximation for the linearized velocity

response to an implflsive motion of the w'dl. A

comparison of this result with munerieal ewdua-
tions is made in appendix G. Equn!ion (100)

provides a good qualitative summary of the
results of the numerical investigation and will now

be used for that purpose. An ewduation of this

equation for an intermediate wdue of the radiation

parameter (k=-3.0) is s|lown in figure 3. The

value k=:3.0 corresponds roughly to the value

K=4.0 used in figure 2. The ratio of specific
heals ./ is taken equal to 7/,5, but the results

wouhl be qualitatively similar for any 7 between

1 and 5/3.

Figure 3 is a plot of gas velocity divided by

piston velocity as a function of time r and distance

from the wall _. These results al)l:,]3 * at all values

of the mean radiation absorption coefl%ient, %,
1).5" virtue of lhe basic similarity and use of the

radiation mean free path (%-1) as the unit of length.

The dimensionless time, r, _md distance, (, are

defined in equations (73) and (74) which are

r=_-,/(7_ 1)n%aot and _=_2/(7_1)1_,r. ,qince

_;2/(7+ l)n is of order one, the radiation mean free

path is approximately equal to one in units of (.
The disturbance velocity is plotted as a function

of fiJne at a series of fixed positions. The r and

scales are broken at several points to produce a
better visualization of the enlire flow fMd. Be-
tween breaks the scales are linear and wouhl have

their origins at the intersection of the r and ( axes
if coati,meal back to the origin. Notice that the

scale size is quite different in the separate regions.

At a point located a small distance from the

wall, the velocity takes a sudden jump at a time

equal to that required for a signal travelin_z at

the isenlropie sound speed to reavh the point.
]n other words, initially, the disturbance is a unit,

step prooagating a{ the isentropie sl)eed. The
step dies out exponentially with increasing dis-
t.ance from the wall and is replaced by a smooth
transilion from zero at r:0 to a value of 1.0 a b

r-+._,. In this process the center of the dis-

0.1
0.2

r

2O

55
5(

180

170

60

2O

" 55 6_

190

FmURE 3.--Dislurbance velocity response to impulsive motion of piston (.=3.0).
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turbanceshiftstowardthepathof an isothermal
signal(r=-_). Eventually,at a large distance
from tile wall, the center of tile disturbance

shifts ])ack 1o the path of an isen(ropie signal at

r--_. The center of the disturbance is taken to

be the point where the velocity has reached }_ of

its thml value when plotted as a function of r rot"

fixed _. This point is indicated in each subph)t

of figure 3 by a ]wavy vertical line under the
CllEVO.

At small and intermediate distances from the

wall, the response is similar to that for a gas in

chemical or vibrational nonequilibrium (see rots.

31 and 35). For that case the disturbance is

initially a unit step propagating at the frozen

speed of sound. The step dies out exponenlially,
the ware front becomes dispersed, and its center

shifts to the slower equilibrium speed. The sub-

sequent behavior differs from that for a radiating

g'_s in tim( Ihe <listurl)ance continues to (ravel at.

the slower speed rather than switchiug back to
the sta,'ting value. There is a further difference

between the two eases. For a radiating gas,

there are no characteristics corresponding to a

finite w,locity. Consequently, a precursor extends
ahead of the path of an isenlropic signal at r=(

(see fig. 3). No such effect occurs for chemical or
vihrationnl nonequilihrimn because there is a

characteristic corresponding to the frozen souml

speed, and hence no disturb'race ahead of lhis
line.

A qualitative physical expl,,mation can be given
for the response of a radiating gas to the impulsive

motion as follows: Referring again to figure ,3, at
small distance from the wall the wave front is

compact such that its width is small compared to

the radiation mean free path (eqn'd to 1 in units
of _). As a result, the radiative heat transfer

'withi_ the wave front is negligible. The disturb-

ante is then governed by the isentropic condition

and travels at isentropie speed. As it progresses,

the wave front becomes dispersed by the small,
bu[ nonzero, radiative heal-transfer process.

When the width of the wave becomes comparable

to the radiation mean free path, heat lransfer can

readily occur within the front. This tends to

hoht lhe temperature constant, depending on the
intensity of radiation. At high initial tempera-

ture of the gas (large k), |he temperature is heht

essenlially constant within the wave fronl, and

the dislurlmnce travels at the isothermal speed.

At large distances from the wall, the wave
front becomes so dispresed that the radiative heat

transfer is impeded as a result of reabsorption

relatively near the point of emission. Titus, when

the width of the front becomes large compared

to the radiation mean free ])ath, the adiabatic
condition applies, and the <listurbanee travels at

lhe isentropic speed.

There is another useful qualitative explanation

for the behavior depicted in figure 3. These results
can be relate<l to the properties of the solution for

sinusoidal motion of the wall, given in figure 2,

as follows. At small _, the ware front is compact.

Consequently, at a fixed point near the wall, the

gas velocity varies rapidly with time. A Fourier
analysis of such a rapid variation wouhl indicate

a preponderance of high frequencies. In figure 2

it can be seen that at high frequencies the speed
of the modified classical wave rj is equal to the

isenlropic speed of sound a0. Tiffs accounts for

the initial propagation of the compression wave

al the isenlropic speed. At intermediate vahtes
of (, where we see in figure 3 thai the disturbance

is partially dispersed, the Fourier analysis would

show the peak aml)litude to be at intermediate

frequency. Figure 2 imlicates an approach to

the isothermal speed at intermediate fl'equency, in
agreement with the shift to a slower speed in

figure 3. When the wave front is further dis-

persed, at large _, the resulting low frequencies
lead to a prediction of the observed return to the

isentropie speed. Obviously, there "tre gaps in

the foregoing explanation, if it is not supported
by other information. But such a point of view

may be useful in other problems involving a
Fourier transform that is difficult to invert.

An understanding of the response to an iml)ul-

sire wall motion is not comphqe without considera-

tion of the effect of varying the radiation param-
eter k. This quanlily is a measure of the intensity

of radiation. It is defined in equation (76), which

is k= (3'--1) U _Ti,l_'Rpo%. At snmll

wdues of k, tl,e response shouhl become that

associated with classical acoustic theory, namely

a unit step in velo(,ity propagating unchanged at

the isentropic speed. At large vahtes of k, one
wouh[ again expect the ('lass|eel result, but with

the iseniropie speed replaced with the isothermal
speed, since the large radiative heat transfer

associated with small temperature differences
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FICl:RE 4.---DLsturbance velocity response to impulsive motion of piston (_=0.001).

would hold the temperature constant. These

expectations are realized in a sense, but there are
singul'tr perturbation effects at both small and

large k resulting in a somewhat more comI)lieated

picture. Such effects could be predicted, at least

in part, from the results given in reference 1

(response to sinusoidal motion of the wall).
There it is shown (hat, for large )[', the classical

result of undamped sine waves traveling at the

isothermal speed is ohtained, except for very high

or very low frequencies (see fig. 3 of ref. 1).
At small k, equation (102) indicates that the

quantity b becomes 1.0, and using equation (101),

equation (100) can t)e written as

'ua0-,_/)! 1
U _.0=2 (1-cx-p [-(_!_-l)k_])

L 2[(_ 7-1))[._] 1j2 L2[(_-l)k_]'r"J

1
+_ exp [-- (,"_--l)k_] (1 +_) (103)

At all wdues of _ except large wflues comparable

1, the quantity cxp [--(_'_--l)k_] is equal toto

1.o so that equation (103) represents a unit step

propagating at the isentropie speed (the I)alh of

an isentropic signal is at r--(). This is the classi-
cal result which is expectod for k--0 when radiation

effects are ahsent, tIowever, at htrge values of

comparahlc to l/k, the step (ties out exponentially

and is replaced by the error function variation.
The distance from the wall at which this occurs

goes to infinity as k goes (o zero. At such dis-
tances, the transition in velo('ity still occurs in a

region narrow comp'_red to the (Its[ante, and the
transition is centered on the path of an ise))trol)ic

signal. This result is p]otted in figure 4. Since

the unit step prop'_gatcs unchanged until the
distance from the wall becomes l)wge of order

k -_, the region where it does change is brought
into focus by plot, ting the veloei(y as a function of

kr and )_'_rather than r and _. Two other features

in figure 4 require explanation. The width of

the region where the velocity transition occurs

depends on the wdue of k and is narrow compared
to the distance from the wall. Therefore, a

specific small wdue of k equal to 0.001 is used.
Also the scales arc hroken in several t)laces with

different scale sizes in each region.

For small k we see in figure 4 that the disturb-
ance remains centered about the path of an isen-

668944 63
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k:lO00 (High To)

FTc, traE 5.--Disturbance velocity response to impulsive motion of piston (_:= 1000),

tropic signal (1"r:1"_). The radiation merely
eauses a dispersion so that the unit step is eventu-
ally replaced by a smooth transition.

At. large values of l: (high temperature), equa-
tion (102) indicates that the quantity b is equal
to 1" and equation (100) becomes

_("_)s ,+o=; {I-e'PE-('I/:_-I)}'_}

+ err -T+
(err-(-r--_ ) (2[ (,,__ 1)j[,,,,z_ })\ 1,.2[(.v'3,--1)1_._]_<'-'

-l=l exp [-- (,/_-- I)],.',] (1 -I-1_i)

E-<,,,-,>
erI-'( -- _7 ,,_k2[(,,_-l)_-_l',-f

+err-(_(_+_) "['_ (104)2[(,_- 1)/_]'/'J)

Three ranges of distance from the wall must be
considered in this case. All three ranges are

shown in figure 5. Here the scales are broken in
several places and are linear between breaks as in

figure 3. A value of/_= 1000 was used to compute
the points, but the graphs would remain similar
for larger values. There is a boundary layer in

1
which _ is small of order f where the appropriate

inner variables are/['r and k_, as shown in figure 5.

In this layer _ is small compared to 1.0 and the

,.o.The,'.quantity

equalion (104) simplifies to

ua(r,_)U _k-+®_xea=12 {1--exp [-- (_"_-- 1)1"_]}
t:r fixed

(err (2[ l_'r--'/71di "_ -_-e,'f(2[ /{'rq-_,_'_ "l_)(_- 1)k_]',_J (_]',' J.

1 (1 kr--t'_ "_-k_ exp [--(_'_--l)t'_] nt ]/cr_k_l ) (105)

Within the boundary layer this result includes a
step which propagates at isentropie speed and dies
out exponentially. The error function terms
represent a smooth transition centered about the
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path of an isothermal signal (kr=_'_le_). W]wn

k_ becomes large compared to 1.0, the latter varia-

tion replaces the step eompletely and we have

This function represents a transition from zero to

one in a narrow region centered about kr----_._k(.

In the next range of distanee from the wall, the
appropriate variables are r and _. These are taken

1
to be large compared to _, but small compared to

k. In that case exp [--(_C_--l)(/k]=l.0, ex-p

[--(_,_--l)k(]--0, and err [ k_+"_/--_-7-- 1 0
-_G_-l)k_J- ' "

Equation (105) then becomes

(107)

l_ fixed
Ir fixed

I3y cancellation of _:_" front the numeralor and

denominator of equation (106), it. is seen that the

result at the outer edge of the bound,try layer

matches equation (107), which applies outside

the boundary layer. In terms of the physical

variables r and _, equation (107) represents a

unit step propagating at the isothermal speed.
At least it is a step in the hmit as k goes to'in-
finity, since the error function strueture-'t't_en

becomes eompressed into an infinitesimal width.
1

Thus, except, for very small _ of order _. an<I very

large _ of order k (see below), the expected elassieal

result of a unit step with isothermal speed is

obtained. Then the step which appears at

r=_ in the middle and outer regions in figure 5
has an error function structure, not, resolved in

the graphs.

The last range of distance from the wall, of

interest, for the case of large k, comes into focus

in terms of the varial)les _ and • When these

1
are taken to l>e large compared to _, equation

(104) simplifies to the expression

_IA _ _' *' ' 1 {,-ox,,U -->++ =_
_/k fixed
lrYk fixed

t"-' g]J;
(10s)

At ,+,_e/l'//'_-.,-.*...,n this reduces to equation (107), and

hence represents a unit step propagating at the

isothermal speed. As _//c increases, the step dies

out: exponenti.dl.y and is replaced by the error
function xmriation indicated in the first term.

Jn this process the precursor, extending ahead of
the line r=_, reappears (see fig. 5). At values

of (/k._l 0, equation (10S) becomes

_I" fixed
rlk fixed

(10g)

This result yields the asymptotic behavior at
large _/k. The transition of the velocity dis-

turbanee from zero to one starts ahead of the path

of an isentropic sigmd (r/#=_,/t') and is com-

pleted in a width of order [(_'_--l)(/k]t_[(_-_
--1)r/a-p. Thus the wi(lth of the wave front

grows parabolieally at large distances from the
wall; whereas the separation between the paths of

isothermal and isentropie signals increases at a
faster linear rate.

In retrospect it can be seen that the behavior

of the disturbanee for Jarge k is qualitMively
similar to that for the intermediate value of

/:=3.0, described earlier and pictured in figure 3.
But for large L', the switch from isentropic toward

isothermal speed of the wave front occurs at

smaller distances from the wall, is more complete,

and persists to a larger distance from the wall.
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Numerical investigations have not been made

of the pressure and temperature fields. Itowever,
1he behavior of these quantities can be described

qualitatively using the results from the limiting

cases discussed earlier and in appendix E. Since

the results for large k are similar to those for

intermediate values, only large k will be considered
here.

]:_eferring to figure 5, at values of 1:_1.0 (i.e.,

near the wall) the velocity undergoes a unit step
at kr=k$ and thereafter remains constant. The

dimensionless perturbation pressure p'/poaoU also
takes a unit step at this point, but_ does not. remain

constant thereafter. From equations (F.1)-
(F.3) and (F.14), it can be seen that in a time of

order lcr= 1.0, the pressure at the wall drops to a
value of 1/_. It remains at this Yalue until a

large time of order r=k, _hen it slowly returns
to a value of 1.0 and thereafter remains constant.

At a point located outside the boundary layer

such th,tt t:-l<<$<<lc the velocity undergoes an
error function variation from zero to one in a

narrow region near r=_. The perturbation
pressure follows a similar variation from zero to

l/v'_ in tiffs region. But rather than remaining

constant thereafter as does the velocity, the

perturbation pressure eventually rises to 1.0 at a
time of order r=k.

At, large distance h'om the wall, where ( is

large compared to k, the pressure variation follows

that of the velocity. This is an error function

variation from zero to one in a relatively narrow

region near r=ti, and no further change. In all
three regions the final value of the perturbation

pressure is 1.0, which is the same as that which

would occur in the absence of radiation (k=0).

Equations (F.1)-(F.3) and (F.15) can be used to

find the behavior of the temperature for the ease of

large k. At the wall the dimensionless perturba-

tion temperature RT'/aoU undergoes a step at

r--0 similar to that taken by the velocity and
pressure, but the amplitude is equal to ('r-1)/V.

AERONAUTICS AND SPACE ADMINISTRATION

This is the same variation as would occur in the

absense of radiation. However, in a time of

order kr= 1.0, the pertm'bation temperature drops

asymptotically to zero by radiation to the wall,

which is held at constant temperature. It should
perhaps be reiterated that, in the present inviscid

approx-imation, the temperature of the gas adjacent
to the wall need not be equal to the wall tempera-

ture at all times because of the presence of an

optically thin thermal boundalT layer.

At a fixed wdue of _ of order one, the pertur-

bation temperature (as a function of r) remains
zero in the neighborhood of r=_ _ where the

velocity and pressure rise. It subsequently rises
slowly and falls again to zero at some time greater
than r=k.

At Jarge distances from the wall (_>>k), the

tcmperaLure participates, along with the pressure

and velocity, in an isentropie variation near

r=(. Thus the perturbation temperature, RT'/
a_U, rises to a value of (_,--1)/7. In the subse-

quent time, while the pressure and velocity re-
main constant, the temperature slowly returns

to its initial wdue of zero in a time greater than

r=k. The final perturbation temperature in all

three regions is zero owing to rqdiation to the wall,
which is held at constant temperature.

In reference 1, a solution corresponding to
sinusoidal tempert_ture variations of a fixed wall

is discussed, as well as the results for sinusoidal

motion of a wall at constant temperature. The

problem with impulsive time dependence, corres-
ponding to the former, would be that of an im-

pulsive temperature variation of a fixed wall.

This is an interesting ease. Although no complete
study of the problem has been made, a qualitative

description of the results to be expected is given in

appendix It.
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APPENDIX A

TABLE OF SYMBOLS

a

a0

GI_ G2

A

Al, Aa

b

b_, b2, ba

B

B_

fi

el, t72

C

Cj

err (n)

/(t, x)

f(O

q(t)

quantity equal to (/rfl/_,)/[l+2B=/ h

('/+ 1)1

isentropie speed of sound in undis- H(y)

turl)ed gas

positive finite nonzero constants Im

defined in equations (E.S) and [_, ]:.2,Ia

(E.9) k

eomt)lex constant defined in equa-
tion (C.3)

complex wave amplitudes defined

in equations (77) and (78) K
imaginary pa.rt of one root of

_2--i]c+1=0 (see eq. (F.19)) m,rn
also used as a parameter equal

to aoao/_o in appendix C
0(_)

positive finite nonzero constants
defined in equations (E.S), (E.9), P

l/
and (E. 13)

complex constant defined in equa- Po, p,, 202

tion (C.4)
Phmck function, set equation (S) Q

velocity of light Q,
complex constants containing

wave speeds and damping con-
stants of modified-classical wave

and r,uliation-induced wave,

respectively
constant equal to ,R_aT_ooeo r

complex wave amplitudes R

error function equal to (2/V'F) Re
t

re" e-_ds T

integro-exponentiaI function equal To

C i

to e-<'/")#_-2'du T,, T=
,} 0

arbitrary function
Fourier t.ransform off(*', x)

dimensionless wall velocity defined T,,,(t)

in equation (B.8) T_'(_)
attenuation function defined in

equation (26) u, u'

dimensionless perturbation wall u_, ua

temperature defined in equation

(B.9) u_(t)

( Q./oO,, ( Q/,_)a

P]anck's constant, also enthalt)y
per unit mass

complex quantity defined in equa-
tion (C.2)

imaginary part

integrals defined in equation (E.7)

Boltzmann's constant, also used
as a quantity equal to 16

( (_+ 1)�2(m/n) (',/-- 1) o-T_o/

('r R ooae)

equal to 16(m/n)(_,--1)c_T_o/

(Rp_,ao)

quantities defined in equations
(34), (37), and (38)

quantity'of order

gas pressure
perturbation pressure

components of pressure in expan-
sion (see appendix B)

net heat absorbed per unit volume
and t.ime due to radiation

net heat absorbed per unit volume,

time and frequency interwd due
to radiation

components of (Q/c0 in expansion

(see appendix B)

varitO)le equal to kv

gas constant
real part. of
time

gas temperature

undistul'bed gas temperature

perturbation temperature
components of temperature in

expansion (see appendix B)

perturl)ation temperature at x=_

wall temperature

Fourier transform of perturt)ation

wall temperature

gas velocity

components of gas velocity in

expansion (see appendix B)

wall velocity
25
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Fourier transfornl of wall velocity _0, _,_

approximate gas velocity in im-
pulsive piston problem 0

remaining part of gas velocity
after subtraction of approximate 0

part (evaluated numerically) K

constant wall velocity at t_0 in

impulsive-piston problem v
Cartesian coordinate

coordinate at the position of the
wall P

variable equal to ((_--l)k_ v0

Planek mean radiation absorption p_, o_

coefficient defined in equation

(t2)
value of a in the undisturbed gas

components of a in expansion (see

appendix B) r

frequency dependent radiation ab-
sorption eoeffieien_

parameter equal to naoao,fw

ratio of specific heats

a number small compared to one 0

varia])le equal to adz
• z,,,(t) 1_ 2

dummy variable of integration

variable equal to [" a_ d¢_
,J0 O/

components of n. in expansion
(see eqs. (15.14) and (B.15))

variable equal to t (used to

facilitate transformation)

value of wall temperature at t>0

parameter equal to 8(V--1)cr_o/

Rpoao

frequency of electromagnetic radi-
ation

variabIe equal to _'2/(3,+ 1)7_acx

gas density

density of undisturbed gas

components of density in expan-

sion (see appendix B)
Stefan Boltzmann constant equal

to 5.673X10 -_ erg cm -2 deg -_
sec- 1

variable equal to (2/(3'+l)r_aoaot

ve]ocity potential

radian frequency of oseilhtion in

oscillating piston problem

s,mscmeTS AND SPECIAL SYMnOr,S

denotes the undisturt)ed gas con-

dition (as in po)

components of expansion used in

appendix B, for example, o_, o2

denotes perturbation quantily (as
in p'=p--p_)



APPENDIX B

SECOND-ORDER EQUATIONS

To help establish that tile linearization used in
the text is imbedded in a rational successive-

approximation procedure, the second-order equa-

tions will be derived in this appendix. The small-

disturbance expansion could be carried out in a

number of different ways. As staled in the text,

nonuniformities can be partially avoided by

transforming to the variables t, 71in place of t, x.

This procedure will be used here.

The one-dimensional unsteady inviseid-flow

equations are

0a" POx

_u_t_ bu _p
o _t ' _u 07+_-5+=0 (B.2)

bh , bh Op _)p
p _q-pu 0x _t u _=q (B.3)

(see ref. 1). These are supplemented by equations

(6)-(17) of the lexl, which define Q, and tilt;

equalions of state for a perfect gas, which are

RT (B.4)

u,,(t) =e %/(t) (B.8)
3'

T_( t) = To + _Tog( t) (B.9)

where .f(t) and g(t) are given functions of t with
maximum wdues of order one. Then e is a

dimensionless parameter that goes to zero in the

li,uit of a vanishingly small disturbance. It

will be assumed that all quanlities can be ex-

panded in powers of e at least to second order,

for example,

T=To+_T_+JTa+ . . . (B.10)

We will first expand the quantity (Q/a) to
second order in e, and relurn later to the other

equalions. The variable (Q/c0 is chosen, rather

than Q, to promote simplifications which will

become apparent later. Equations (6) and (17)
can be eomt)ined aml written as

,lB,(T) E..,(n,.--_) ag dn
dT

T= 1/2_ (B.5)
Rp

Tile boundary conditions are

u[*, a',_(t)l=u_,(t) (B.6)

u(t, a:) finite at x- >0 (B.7)

The wall veloeity u_(t) and wall temperature
T_(I) are taken to be given functions of t (T_(t)

appears in the expression for Q).
We x_Jsh to expand the flow qu'mtities about

a zero value of an appropriate pargtmeter thai is

a measure of the magnitude of tile disturbance.

For this purpose, u_(t) and Tw(t) can be expressed
as

(IB_('_) E.2(_,--r,,)-6_ d_ dv (B.ll)+, ,#

wli ere

n,= ---drl (15)
t 0

Tile integral over v can be carried further by

expansion of equations (B.11) and (15)in powers

of e. For this purpose, the following expansions
are needed

n, = _v0 -}- E'I_ul q- 0 ({ 2 )

(B. 12)

(g._a)

27
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By substitution of equation (B.12) into (15), and

that (_)0is constant, it can be establishednoting

that

(°5_r0= "q
0

we will continue to concentrate on the first term

of the inte_and of equation (B.11). By power
series expansion of the function B_(T), given in
equation (8), and using equation (B.10), we find

dB_(To)
B,(T)=B,(To)+, dTo T_

_o_(o_) d_ (B.15) k -

Power series expansion of the E o hmction yields From this and equation (B.9) it follows that

E_(_,)=E,(,,o+_,,,-F...)

The relation dE,z(_)/d_=--E,(v) can be used to
_l'ite this expression as

E., (V,) = E,_(_,0)-- eE_(n@ nq + 0 (fl) (t3.t6)

Since the E_ function is logarithmically singular
at a zero value of its argument, the radius of
convergence of the power series expansion of the
E: function goes to zero as n_ogoes to zero. tIow-
ever, this does not inwdidate the expansion, since

enq goes to zero at. the same rate as does the radius
of convergence. In other words, equation (B.16)
remains valid at all values of n. This can be seen

by noting that as n goes to zero, where El(_,0) is
logarithmically singular, equation (B.15) shows
that n,_ goes to zero algebraically. Then the

combination E_(%)% remains finite and, in fact,
goes to zero as n goes to zero. The same would
be true of all higher-order terms in equation (B. 16).

Using equations (B.12)-(B.16), the quantity

a, E2(n,) in the first term of the integrand of

equation (B.11) can be written as

]-o o- o,

B,(T,_)--B,(T)!,=o---E ---

+j (. dB_(TO)dTo

[T_,,q_(t)

dB_ (To)
dTo [To(.j(t)-- T11,7=o]

, ] (FB,(To)

--r_i,=o]}-t-... (B.19)

With the assumption of a Boltzmann distribution
of states, the quantity a,/a is a function only of
temperature (for a fixed value of v), since it is
proportional to the mass absorption coefficient.
This is the reason for choosing to expand (Q/a)
n_ther than Q. Expansion of a,/a in powers of
(T--To) and use of equations (B.10) and (I3.12)
leads to the result

T|

(B.20)

Then, since To is constant, it, follows that

•,c_/1 d_= dTo Tid_
(B.21)

Use of equations (]3.12), (]3.17), (B.20), and (B.21)
and a similar expansion of the integral terms of
equation (]3.11) leads to the results

2(°9,dn -1-0(_) (B.17)

For the purpose of expressing (Q/a) in terms of T,

QIa=_(QIa),+d(Q/a),+ ... (B.22)

(O/a)_=C £ [Tog(t)-- T,[,=olF(,_)

;o _ ('--_)F([,--_I)bT, d_) (B.23)- I.- t
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--, [n--_!

- ;,-7i _- ,/7

+ c,_, o { T,,:i(O_T,i,=ol f o, A_o _ [ T'dnF"(')

..)_, .bTl ..1(7--7) Fzt(l_-nl Tvbl 57 dn$ (B.24)-, [,-71

where the functions F, Fr and FH arc defined

by the relations

[(o.)]_C F(n)----2_- \a]o dTo E,,_ -_ o n dv
_o

(B.25)

oo .,,
(B.26)

A new variable _=X--Xw(t) could probably be

nsed, but the second-order part of (Q/a) would

contain additional terms depending on the density.

Altogether, n is probably the most convenient

variable, when the expansion in _ is extended

beyond the linear appro:dmation.
It can be seen that the transformed coordinate

system t,n is not. an inertial reference frame.

This complicates the cx_pansion of the continuity,

momentum, and ener_- equations. However, it
will be seen that this complication is similar to one

which occurs in classical acoustic theory also, and
can be treated. To facilitate the transformation

procedure, t will be replaced by 0. Then we wish

to cx_press equations (]5.1)-(13.3) in terms of the

variat)Ies 0, n defined by

0= t (B.30)

n ell ,_(t, (13)
_ _(t)

The transformation of derivatives is, in general,

O bO O , On O (B.31)
b_=_o -_ ot _,

c. F,,(n)=2_ ,tTo dTo -o_-_- " o n

(B.27)

The consbmts C, C_, and Czr arc arbitrary. In

the text, C was chosen such that for a grey gas

F(n) becomes equal to E_(n). A similar choice
here leads to

C= 8(r To3_0 (25)

C_= 12(_ To3ao (B.2S)

CH= So-Toao (B.29)

Then for a grey gas Fz(n) also becomes equal to

E2(_). The function F_(v) introduces the effect of

tempcrature dependence of the mass absorption
coefficient into the equation. In the case of a

grey gas, this function is zero.
In the foregoing procedure there arc no obvious

difficulties that would prevent, an extension of the

expansion to higher order in _. It can be shown

that an attempt to ex33and E2(_/,) using x as the
basic variable instead of 7/ will fail because, in

gener_d, x is not zero when 7, is zero (see eq. (10)).

O O0 b On b (B.32)
Ox OxO0[OxOn

These can be partially evaluated using equations

(I3.30) and (13) to obtain

o _ o _on__ (B.33)
Ot _0 _t b7

O O
(B.34)

Ox _

_n

The quantity b-t can also be ewduated in terms of

t and x using equation (13). Itowever, in the
bv

transformed equations, _-_ mus! bc expressed as a

function of 0 and 7. For that purpose, equations

(B.30) and 03) must be inverted to obtaiu expres-
sions for tandxintcrmsof0and 7. Sinceaisa

function of {emperature and density, the inversion

will depend on the condition of the flow field, in

general, tIowever, it turns out that with an

expansion about _=0, the inversion can be found

to any desired order in _ hy a "boot strap" type

procedure.
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Differentiation of equations

yields

where

(B.30) and (13)

do-dr 03.35)

by dt +c_dx (B.36)
d, =bt

d z ^
b_l_ x,,_ [" bc_(t, _:) dx (B.37)
-_----aw _tt _- Jx_u) 5t

Inversion of equations (]3.35) and (B.36) leads to

t-O (B.30)

bn dO (B.38)dx=l dn--l _t

Using equations (B.S), (B.30), (13), and (B.38),

equation (B.37) can be written

b_l ao .r/,,x-- ['" 1 be_(t, _') d_ (B.39)

To express this as a function of 0 and rl, a Irans-
be,

formation of-_ according to equation (B.33) is

b,7
needed. But._ itself appears in that equation.

The process can be carried out, nevertheless,

0n
because, for evaluation of bt to a given order in _,
b.
b-t is onl 3" needed to the next lowest order. For

this purpose, an expansion of a is required as
follows

Og = (3_0-}- IEOt I @ 0 (_2) (B.40)

Substitution in equation (B.33) and using the
fact thai a, is constant leads to

ba bm . b_
N =e _0 -t-e N -_q-0(J) (B.41)

When this is substiluled in equation (B.39), it is

On
seen that _ is or order E. Hence

37=_ N-I-U_ ) (B.42)

and it follows that

b, .0., .
-_=--,ao71(0 ) dn-k0(_ 2) (B.43)• _0,10 b0

This procedure couht be carried to higher order,
but for the second-order results the derivatives

need only be transformed to order E, since the

quantities on which they operate arm of order e.

Expanding the flow quantities in powers of
and using equations (B.33), (B.34), and (B.43)

leads to an expression containing e and e2 terms.

Equating the coefficient of the e term to zero and
replacing 0 with t yields

bp_ bu_
5t t-c_oOo_ =0 (B.44)

bUl_ bpl=0 (B.45)
0o -or tao b_

Oo Ot bt c< _ -- (B.46)

Similarly, equating the coefficient of the e"_term to

zero leads to the expressions

+1_ f. b., bp,(x° .L, bt On

bu_ 4 m bm (B.47)
--_ool_- _o bt

bu_ 31,,, [--_' f(t)po8T+ o -aT=-Oo

^ ]3,,,+1_ b_ (t_+_ou_

b_ll.._ Ogl b_t 1

po bt bt _o " a=-- -- .[(t)

bh,q_ff_ [" bh, hi,," _ (B.49)
--P_ bt c_0\po bt bt J

The quantity _ appearing here should be expressed
in terms or the other variables. This can be done

by expanding the quantity (a/p) in powers of

(T--To). It can be seen in equation (12) that (a/p)

is a function of temperature alone, since the mass

absorption coefficient (a,/o) is a function of tem-

perature alone in the assumed absence of non-
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equilibrium processes other than radiation. It. is

found that a_ is given by

d ff (To)
¢_l=ao Pl-_-po P

po dTo
--T1 (B.50)

Differentiation of equation (B.55) with respect
to t and substitution of equations (B.57) and

(B.58) yields

The expansion of tile equations of state is

straightforward and need not be discussed.

Finally, using equations (13.6), B.7), and (]3.8),

the boundary conditions can be written as

u,I,=o= _ fit) (B.51)

u2!,=c= 0 (B.62)

and all quantities must be finite at n_o. The

foregoing ex_pansion procedure could evidently be
extended to any desired order in e.

When solutions of t.hc foregoing equations in

terms of t and _ are found, a parametric repre-

sentation wmfld result from also expressing x as a
function of t and n. Such a relation follows from an

integration of equation (13.38) using equation
(B.43). If 0 is replaced with t and equation (B.8)

used, the result is

z=-' +x_(t) --_ L"[2_,_(t, ;7)-_, (o, _)](/_ + o(_ ,)
(3/0 O_0

(B.53)

The linearized results given in the text can now

be derived. Expansion of equations (B.4) and
(B.5) in powers of e yields

h_=-_-_ RT, (B.54)

T,=I pL 1 a] (B.55)Pl
po 3'17 Po

Equation (B.45) is satisfied identically if a velocity

potential is defined by the relations

c)_ (B.56)
_/1 =el0 "_

b_ (B.57)
Pl=--Po _t

Substitution of (B.56) into (B.44),leads to

where use has been made of the perfect gas relation

for the isentropie speed of sound

a2o=yRTo (g.60)

Sul)stitution of the foregoing relations into equa-

tion (B.46) leads to

/32_,, _= 2b2___(7_1)ao (_)(B.61)_t 2 Uoao b_2- Po 1

1It can be seen that. _ =_ Q_+0(e), so that the

last. equation can be written as

6 _I , ., Q,
bt 2 a]c_b)_'=--kT--l)--po (B.62)

To obtain equations (1)-(5) of the text from fl,ese

equations two further steps are required. First,

the primed quantities in the text are perturbation
quantities so that, to lowest order, each is

times the corresponding quantity with subscript

1. Since the e wouhl appear as a factor in every

term, it woold cancel. Secondly, if x_(t) is

neglected in equation (B.53), we see that x is

equal to _ to lowest order. With this substitu-
t3/o

tion in equations (B.56)-(B.59) and (B.62), we

obtain equations (1)-(5) of the text. Alter-

natively, instead of neglecting x,(t), we can

measure x from the wall. That is, we can interpret

the variable appearing in the text as a new vari-

able _:, with _=x--x_(t), so that _:=-_- to lowest
o/0

order. It. will bc seen in the following discussion
that the second alternative is essential in the

present problem.

Let us consider an expansion about e=0

with x as variable in place of y. As in any

acoustic theory, such a development would include

a transfer of the boundary conditions from

x=xw to x=0; that is,

_P'-- - o_g _ _" (B.58) butt,x) I
_(¢,x_)=u(t, o)+_1 o_,._ t x_+o(xL) (B.63)
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It can be seen by inte_ation of equation (B.S)

that Xw is formally of order e. In classical acous-

tic theory this fact is used to a_Tive at the con-

elusion that tile boundary condition for ul is

_,,(t, x)Ex-0=_J'(t)

When x_(t) is large, as in the impulsive-piston

problem at large t, it is customary to replace x
with x--x_o(t) in the solution. It can he seen from

equation (B.53) that, to lowest order, this is
equivalent to using n as a variable instead of x.

For the case of a radiating gas, there is an impor-

tant additional consideration. In appendices C

and D it is shown that the exact solution (for

sinusoidal boundary conditions) of the foregoing

linearized equations is not analytic a! the wail.

It follows that the boundary conditions cannot

be translated according to equation (B.63), even
for small x,_,. Therefore it is essential to use n

as a variable rather than x in this problem. AI-
A

though x cannot be used, the variable x-- x--x_,(t)

eouhl lie, since it wouhl not be necessary to transfer

tt,e boundary conditions in that ease. This is the

basis for the statement made in the text,, that the

equations obtained by neglecting x_ are correct tie

lowest order if x is measured from the wall, rather

than [FOn] a fixed origin.

One other type of nonuniformity appears in the

present linearization, as well as in classical acoustic

theory. A discrepancy appears at large distances

from the source of a disturbance owing to eumula-

live nonlinear effects. This can be illustrated by
considering the impulsive-piston l)roblem, wherein

a compression wave travels outward from the wall.

In the foregoing discussion, it is concluded that,

in the first approximation, .r shouhl be measured
from the wall. For distm'l>anees in the rear of the

compression wave this is correct, since they are

in(teed moving into a gas that is at rest relative to

the wall. On the other h,md, the foremost part
of the wave front is moving into a fixed gas. Thus

the wave velocity is in error by a small amount at

the front of the disturbance, an effect which can

lead to a large error in the relative positions of
elements of the disturbance in the com'se of a

movement over a large distance. It can be seen

that similar errors will result fi'om evaluating the
wave speeds at the temperature of the undisturbed

gas, rather than at the correct local temperature.
These effects have been treated by a coordinate

stretching procedure 0"efs. 25 ,rod 26). In this

technique, the lincarized results are not discarded

in favor of a new approach. The independent

varial)les are repl,lced in the solution by new

variables which are functions of the original vari-
ables. It is assumed that this procedure can be

carried out in the present probhqn, but the matter

will not be further investigated here.



APPENDIX C

INVESTIGATION OF EXPONENTIAL APPROXIMATION OF ATTENUATION FACTOR

In reference ! and in d,e presell! work, the

altcnuation t'aelor F(r_) appearing as the kernel of

the integro-differential equation (30), is approxi-

maled by an exponential according to equalion

(34). In Ibis appendix lhe validity of the ap-
proximation is invesligated in lhe ease of a grey

gas, for which

1"(,7)-- E_(,7) = f]_'-v"du (C.1)

the polential and the boundary conditions in the

following Grins

¢=IrITu Re [lI(y)e'=q (C.2)
0¢

i)_ _._0=RT°a0 Re [,,le '_'] (C.3)

dT,_, [Bd,_q
dt =ooTo Re (c.4)

It. is found lhal the approximation does not yiehl

a uniformly valid approximqtion for tile gradient

of lemperalure at tile wall. Tile same is !m,e for

higher derivalives of the other physical qmmlilies.
llowever, no nonuniform!ties are round in the

approximations for the physical quantilies them-

selves near the wall. At htrge distance from the
wall iwo kinds of error can occur as follows: (1)

In any acoustic theory, cumulative nonlinear ef-

fe('ls appear in the ev|duation or a flow fiehl far

from the source of a disturbance, even in the

lewes! approximation. If tile disturlmnee is suf-

ficienlly small at large distances, these effeels may

not be important. When they are important,
the linear!zeal results must be corrected to ebb,in

a uniformly valid approximation (see refs. 25 and

26). (2) If an approximate solution is used,

ralher than an exac! linear result, there may be
add!tiered emmdative effects which will cause

error in the prediction of the flow fieht far from the

source of disturbance. Again, such effects may

not be important if tile disturbance attenuates

suffwiently. These matters will not be investi-

gated here. In the following, an alten|pt will be

made to find any other possible sources of error

which may result from tilt, exponential approxi-

mation of the aitenualion factor. For this pur-

pose we will concentrate on lhe solution for lhe

response of a grey gas to sinusoidal boundary
conditions. In that case it is expedient to express

¢(t, oo): --RT" Re [H(_)e'_']=finile quantity
0)

(c.5)
Wl l e1"o

!1- oz/ao (C. 6)

(see ref. 1). Tile quantilies A and B are dimen-

sionless eon@ex eonslanls, nssunled to be sped-

fled. The magnitudes of .-1 and B must be small

compared to one, in eonformit 3- with the require-
merit of small disturbances imposed in tile

linearization.

Substitution of equal!on (C.2) into equation

(30) .yields

ll(y)-blI" (y)=--i_b { [B--H(0)

_l,r H" (0)] If2(bg)--fo_ E2[b(y--._)] [H' (,_)

+_ H'" @)] ,/_ +ff E..,[b(r.t--Y)l [H' @)

where

aml
= 8 ('r-- 1) _ T_/Rooao

(c.7)

(c.s)

b = _oao/_ (C. 9)

The boundary conditions on the complex dimen-

sionless quantity II(!t) are found from equations
oo
oo
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(C.2) to (C.5) and are

IF(O) A (C.10)

H(co) =finite quantity (C. 11)

In reference l, approximate solutions of equation

(C.7) are found by replacing tile /g-,2function with

an ex'ponential. IIere we will consider an approx-
imation of the form

L

G(,) =_ m_e-',, (C. t2)
l=1

Solutions can then be found in the form

J

H(y) =_ C_e_,. (C. 13)
j=l

Substitution of equations (C.12) and (C.1:9 into

equalions (C.7) and (C.10) and equating the co-
efficient of eaeh resulting exponential term to zero

yiehls the relations

2
ej m

m2 _--0
Cj-- Y_,_0

for all j

9:1+ _l_b +cJ

J

j=l

for all 1

(C.16)

Specializing to the case L=2, equalion (C.14)
can be written as

c=,
1-]c_--i[£' (14,, _) (_i_q_2)--'d(fl

where

_l]ld

( 91+ c_
mil

7?_ 1 2 1/172

(c._7)

1£-2 m,-- ,_ (C'.ls)

B=nlb (C. 19)

Equalion (C.17) is a sixth-degTee algebrMc equa-

tion in % The six roots are lhen the quantifies

c; in the solution represented by equation (C.13).

The integro-differential equation for II(y) can be

eonverted to a purely differential equation of
sixth order. It follows flint all solutions of the

integro-differential equation are contained in the

general solution, equation (C.13), with J 6.

Since the characteristic equation (C.17) contains

cj only in tile eonlbination c_, h,lr of the roots will

have positive real parts. The corresponding

vahles of ("j must be set equal to zero to satisfy

the boundary condition, equation (C.t 1). Taking

the first three roots to be those with negative real

p._rt, the J in equation (C.13) can then be set
equal to three, and equations (O.15) and (C.16)

can be solved for lhe amplitudes C_, C2, Ca in

lerms of the known qu,mtities ;l, B, c_, c.,, ca.

Ir .,,/m, is small compared _ith one, the roots

of equation (C.17) can be found by an expansion

'_b()ut m2/m, equal to zero. The lowest order part

o[' the result is that obtained by setting the right

side of equation (C.17) equal to zero. This is the
('haraeteristic equation used in reference 1 and in

the lext ol" the present work. It has previoudy

t)een shown that this equation can be solved to a

good approximation t) 3" an expansion for small

values of sr_--l. This expansion x_ill be used

here, since it greatly ra('ilitates the manipulations.

The results from the double expansion are

el=--i (l+(x,'5--1) ia_1-ia

Eml 1 (,_ fl [l--ia]

+ higher order in (¢_--1) ,nd m2/m_

C 2 --
fl { 1+ (¢_,-- 1) iay'l --iI(#T " 1--ia

m2 K(1 -- iKfl)
+m_l (-,_-- 1)

_E]+(:-: ll-/el
, higher order in (¢_--1) and m2,/m_

_ (n2_") {1

+ higher order in ((_'-- 1) and m/ro_ }

}
(c.2o)

}
(C.21)

m_ /KN (,,,,/,)"-_1
2m, (n2/nO 2__1--',:Kr_([_2/_l)2

(C.-'22)
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where

a= I(_/T (C.23)

1 -F_1-t- _2

Specializing to tile case of constant wall temper-

at ure (B--0), equations (C.15) and (C.16) can be
solved with the aid of tile double expansion to

obtain

C,=iA+O(,_--I)+O [(¢_--1) m21_l.J (C,24)

r-- [ "D't 21G=oG,y-1)+(I (_,_-1) _j (C.25)

]
C_----(,_--1) _m-2_,IE ("'2_z--1] [1--ia]ml (1--;123) \.n#

n2 3
77,I

(;:, ;)r("4-d?L,;,

order, deriwttives of Ca exp (c:_!/) can t)eeome large

at y=0 when n.._,ln_ is large. Substitulion of

equations (C.20) to (C.26) into equation (C.13)
and differentiation lhree times with respect to y

leads to the expression

H'" (0) = - iA- q'T- _) :'_-"A
' D'l 1

,, rcm,l Q4
L\ttll A _ ,

(n2"} 2 ll[l__a I (::_--i)[(:2_) _-l](1 -- iI@) \_;/-- J

The neglected terms are small compared it) those
retained for all values of the parameters. The

term proportional to m2/m_ is sin.ill compared lo
the first for small w2/mL at all wdues of the

parameters, except when n23fi_t is large compared
to one. For that ease equation (C.27) can be

sinq)lified to

+ higher order in (¢_--1) and m2/ml (C.26)

From these results it ('an be seen that if m2/m,

is small compared to one, lhe values of % c2, Cu

and C_ will differ only 1)y small amounts h'om their

vahies at m2/ma=O for all vahles of Ix" and 3.

Such a change in tile wave speeds couhl cause a

nonuniformity at large x because it is a cumulative

effect. For the response of a g'rey gas to an im-

pulsive motion of the wall, however, it can be
shown that su(,]l a nonuniforlnity does not occur.

PThis is so because the 0 m_ (_--1) corrections

to the wave speeds go to zero at the large vahws

of/3 involved in the evaluation of the solution at

large x. In other words, the component waves

with appreciable wqve speed discrepancies are

sufficiently damt)ed that their amplitudes become

negligible at large z, x_here their positions are
given inaccurately by the single-exponential ap-

proxinmtion of the attenuation factor. Possible
nonuniformities of this nature shouhl be considered

in applications involving nongrey gases or wall

boundary conditions different than those used here.

The amplitude Cj goes to zero when m._/rnt is

zero and will cause only a small change in H(y)
when m2/ml differs h'om zero by a small amount.

IIowever, since ca is equal to (--_*23/n_) to lowesl_

H"'(0)-- --iA-- (¢T--1) m2 A
m l

F("-G]'_I-I
L\ttl/ 1 . . _--Xnjl_ff_ . . . (C.2s)

Using equations (C.2), (2), (3), and (4), it can
be seen that the frst deriwdive of temperature,

second derivative of velocity, ,rod third deriw_tivc

of pressure (ewduated at the wall) each have terms
proportiomtl to H'"(O). lIenee lhese and higher
derivatives of .7, u, and p become singular a! the

wall as @23/s_) apI)roaches infinity. IIowever,

the region of nonuniformity becomes exponent tally

small, since the Ca term involved is nmltiplied by

exp [--(_123/l_x)Y]. All effect of this type is pre-
dicted in reference 1. The basis for the prediction

can be seen from equation (C.7), in which the

first term on the right is proportional to _2(bg).
The first deriw_tive of the H2 function is logarith-

mically singular at a zero value of its argument,
whereas the first deriwllive of the integral t,erms

of eqmdion (C.7) is not. It follows that the

only remaining part ot" Ill(, equation, the quantity

H(y) +H"(y), must match the singular behavior;
t]mt is, H""(y) must be infinite at y--0. Fm'ther
details on tim form of H"'(y) near y=0 are
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given in appendix D, where a procedure for

obtaining an exa(,t sohltion is discussed.

To deter,nine at whi('h values of _ an<! y tile

foregoing nonunifornfity becomes important, spe-
cific wdues of m and _t are needed. Values of

mr, m2, 'rti, and 7t_have been foun(t wliie]l satisfy
the following requirenlents:

(1)

(2)

f/
(3)

(m,e-'"+m2e-"x'),=o G(O) 1.0

(m,e-",'+m.:.e-"2,)e-'2'(t_= F=.,(n)e-"2,d_
• 0

(m,e-",'+ m_.e-"_Ovd, .... F.2(,)vd,= 3
• t;O "

(4)
Leasl squares fit of m_c-"_,+m2e-'2, to E'._(,)

The first two of these conditions were ('hosen to

obtain a good fii or the approximating fimelion

to E2(n) tit small values of _. The third require-
ment insures a correct result in llie Rossehtnd

limit of strong absorption. Tim last condition

is self-explamitory. The resulting viihies of m
_n(| /7 ape

m_--0.745

n_=1.532

m2 0.255

7_2=20.

The second terln in equation (C.2S) has its largest

wihie when KiT and (_ are or order 1. For a wdue

of 5'---7/5, and lhe foregoing values for m arid n,,

tile second lerln begins to exceed the first ill at)o(ll

fl 1.0. The region of nonunifornliiy at l]iat

pohil is confined to vahlos Of y less l|lan about

0.1 and is confine(1 to y less lhan 0.1/[3 for larger 77.

Three types (if possitile nonuniformilies arising
from the present approximation procedure have

been disclosed in the investigations contained in

this and lhe 1)receding appendix. The most

serious are prot)alily those that can occur at large
distance froin the wall. In the ('Iassieal acoustic

theory, nonuniforinities of this iype have ])con

Ire|ileal by a coordinate slrelc|iing process. The

details of liie procedure for a siniilar program in
the present probMn are far front obvious.



APPENDIX D

EXACT SOLUTION FOR A GREY GAS

In this appendix the wdidity of the exponential

approximation of the ath,nuation factor will 1)e

further investigated for the case of _ grey gas and

oscillatory boundary conditions. Equations (C.I)

lhrough (C.7) of appendix C are the exact relations
for this case. Equation (C.7) is a linear integro-

differential equation sinfilar to that appearing in

the Milne prol)lem (isotropic seaitering of radia-

tion or of slow neutrons; see, e.g., ref. 30). A

melhod previously employed for solution of the

Milne problem eouht therefore be used here. This

method, which is exact, utilizes the Fourier trans-

form plus the Wiener-Ilopf technique for factoring
the transform. In reference 32 a solution based on

the Wiener-Iiopf technique is given for a problem

even more nearly analogous to the present one

than the Mil,e problem. An investigation of

equation (C.7) by this method wouhl be desirabh,,
but will not be made here. Instead, an altenmtive

procedure will be used whi('h yiehls information on

the properties of the solution at small and large

values of y. No numerical examples will be given.

If equation (C.13) is substituted into (C.7), and

the integral expression equation (C.I) substitttled

for the E_ function, il is found that. the resulling

relalion can be parlially evaluated by an inter-

change of the order of integration. A solution
would then be obtained by setting the eoeffieienls

of each exponential term equ'd to zero, but there

is an additional part containing an inte_al of a

ftmetion of # times exp (--by,l_z) which cannot be

zero. This suggesls that the solution is of the
form

I1
H(y) - ,._-"Ce_q - G(O)e-_/°dO (D.I)

J=l

When the procedure just described is applied using

this expression, the result is

b2 .
+fo'{l+_--'_b(l+@2:.,)[ 2-01'_

1 -- 0/_J .)

"(f) fo'f')
j=l ,

i 0

(D.2)

In evaluating the inlegrals over _ on the h, ft of

this equation, the principal lmrt wqs taken of a

singular integral. The same must be clone in

evaluating the singular integral on the right side.

since the two singularities cancel each other.

If the (tummy variable of integration, 0, on the

left side is changed to u, equalion (D.2) can be
written as

,=, {I-[ c_--/,,b (1 +_)[2,+_ 111\b-_(b--C'_I'_('/_'_cj/_])

%0<-{,
[2--.l"(i--__,)]}G(u)@;_b[--B

+Y2 _+ (5
_=_ \b+cj./ 2o=0

(l+_O_.)a(O) (/u)dO])c-_'_,,, (1).3)

This equati(m will be satisfTed if the following
relations hohl

l+e?--_b 1+ 2+ in \b+cs/l
for all .)

(D.4)

_7
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Equation (D.4) is a transcendental equation
and has an infinite mmlber of roots. IIowever, 1)y

appealing to a principle requiring that the solution
be _ continuous function of the parameters as in

reference :t2, and excluding those roots with posi-

tive real parts, it is found that only two roots

survive. The properties (ff these can t)e conven-

iently studied using an expansion for small values
of 7--1. The results are quMitatively similar

to those given in reference 1. One of tire roots

leads to a wave speed which differs only slightly
from that of a classield acoustic ware as in tile

approximate solulion. For values of _b greater

than one, lhe properties of tire other root are also

given correctly t)y the approMmation. However,
the exact characteristic equation (D.4) indicates

tllal at values of gb somewhat less than 1.0, the

second root disappears. The approximate solu-
lion does not reproduce tiffs effect, 1)ut instead

indicates that the wave speed approaches infinity

at lids point. The approximate rest,l( is qualita-

tively correct in spite or this difference, since tire

integral term in the exact equation (D.1) corre-

sponds to waves with an infinite wave speed, and
it is this ternl that is simulated 1)y the second root

in tire approxinlate solution for small values or tire

product dJ.

Equation (D.5) is an integral equation for the

amplitude G(O) appearing in tile int%oTal term of
equalion (D.1). No solution has been found.

Ilowever, if it is assumed that one exists, some of

tile properties of the solution of equation (C.7)
can be deduced f,'om the r,u.ln or equation (D.I).

If an asynq)totie expansion of equation (D.5)

for small 0 is considered, it can be seen that tire

ex'pansion is of tire forln

G(O)=aaO_+ba# In O+aaOS+ . . . (D.6)

Substitution of this into equation (D.1) shows that

tile third derivative or H(?I) will be singular at

?I=0 as antieipated in the approxqmate eonsidera-
lions of appendix C.

Sul)stitution of equation (D.1) into tire bound-

ary condition (C.10) yields

_ ate)k cjCj--b _ dO=A (D.7)
j=t d o

This relation together with equation (D.5) must

delermine the values of tire aml)litudes C_ and

C., if a unique solution exists. Since tile function
O(0) has not been found, exact values of the

aml)litudes CL and Cz are not availal)le. Although
the wtlues of these amplitudes are not known,

tile funetioind dependence of tile sohltion for

large y can be fonnd from equation (D.1) in cases

where the reld I)art of e_ or e.2is greater than --b.

In those cases tire unknown integral term will t)e

exponentially snlall compared to the lea(ling term,

which is of the eolnt)lex exponential type. The
wave speed parameter for this functional depend-

ence at large y is known exactly, since it is a root

of tire characteristic equation (D.4).

Tile characteristic equation (D.4) is contained

in a result given in reference 7. There tile equa-

tion is more complicated, since it includes the.

effects of viscosity, thermal heat conduction, n,

finite velocity or light, and a frequency dependent

absorption coefficient. No attempt is mltde in
reference 7 to describe the source of the disturbance

or include tile effect of a wall. ]nstead, the

development is based on conditions far from any

obst'lcle. Also the in',,estig'ttion of the roots of

tire eIlaracterislie equation is confined to a st u(|y of

the one root corresponding to a modiEed-ehtssi('al
_,VIIVO.

Since an exact solution of tire present pl'ol)h,lll

wouhl be obtained if eqmllion (D.5) could be

solved, it is of interest to find _hether an equation

of this type has been discussed in the literalure.

As it stands, equation (D.5) contains the l_o
unknown constants C_ and C=. If a sohttion to

the complete problem exists and is unique, C_

and Ca must be determined b3" equations (D.5)

and (D.7). It can be seen in equation (D.5) that

G(I) must be zero because of tile singularity in

the log term. Using this fact, a relation between
tile given constants A and B can be found _hi('h

will result in C_--0. A similar rell_tion leading

to C_--0 can also be found. When either of these

conditions is satisfied, a fundamental solution

is obtained containing only a Ct term or only a

Ca term 1)lus tile lateral term involving G(O).
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The integral equation for G(O) in either case no

longer contains unknown constants. For arbi-
trary values of A and B, tile solution will then t)e

a superposition of the two fundamental solutions.

The integral equations for G(O) corresponding to

the two fundamental solulions can lie expressed

in terms or the fun('tions.f_(0) and.f2(0) as follows

" _---*_o 2--0 lu f,(O)v t yo +b-'/ " 1-o

L \b+c,/ L ,,o ,O"+b _'f_(°)d°

I

6+_.,0)+.1,,/,(.)

._{ o'<_!"_ +o

{[,+£',,(0)0,0](.:2

6'(0) is given in terms of the solutions of these

equations, and the specified constants A and B,

by the relations

A-- Ba
O(O)=( i_) Y(1--O)O' - - -_o% b_)--h (o)

/hi-- Ad'\ 3' (1 -- 0) 02 .....

where

a=--Vb --Jl' 0--0)0 .f.,(O)dO.o (vo%b'_5

-}-(\,+e_j\Ye-"xlgb+e"'_Vlq-beL ._'OJ_(O)dO]o (D.11)

, (vo%b_-iA(o)d°] (D.12)

The amplitudes C, and C: are determined t)y

C_= 1_[A+./bf0 _ (1 --0)0c, ivo_+b_)fJO)dO ] (D.13)

/ "_ \/b+e2_[-B_ ' O[.a(O)dO] 14)

For values of ul> sueh llm| ce docs nol exisl, tile

correct resull is obtained by selling c_=0. ;It

Iben follows that .fat0)-0 an(lCa=0.

Solution of the complete problem now depends

on solution of the integral equations (D.S) and

(D.9) for the md_nown functions .f,(0) and .f/0).
These two independent equations are essentially

of the same form. It was pointed out to lhc

author by Harvard Lomax, of Ames Rcseareh

Center, that a general solulion for equations or
this t yl)e is given in reference 33. tIowcver, one
or the conditions used in the derivation is not

salisfied by equations (D.s) and (D.9), because

of tile singularity a.t 0- 1 in tile h)g terms. There-

fore, it. is not known whether the solution is valid

in tile present ease. Alternalivel3", if it is nssmned

that.f(0) is bounded in the interval 0_0_1, an

approximate solution eouhl be obtained by means

of a truncated expansion off(0) in Legendre 1)()ly-

nomials. The result from this procedure wouhl

be of interest for comparison with lhc results fi'om

the ex-ponenlial approximation or the altenualion

fttctor used in the text, but tile matter will not be
pursued here.



APPENDIX E

EVALUATION OF INTEGRALS FOR LIMITING CASES IN THE IMPULSIVE-PISTON PROBLEM

In the text it, was shown that, for the impulsive

problem, all disturbance quantities are zero at

slighlly positive values of r. The amplitudes of

steps which occur in the velocity, pressure, and

temperature were also ewduated. Using similar
methods, tim v'wiaiions of the flow quantities at, a

point, far from the wall can be found. The

behavior of the solution for very large wttues of

the radiation parameter k can also 1)8 found in

closed form. Finally, a result for very large r can
be derived.

For the velocity at, a point far from the wall,

the quantity to be evalualed is

lira u(r, _)-qim Re _ (A_e_'_--k', .I_e_)e_'_ &'

-linl Re --i r ['*-'/aS- [_
¢. t_ 7I" L.]o ,]f.-1/4

As discussed earlier, lhe integral near v:0 is

taken on an infinitesimal quarber eirele below the

orion. We wish to show that the eont.ribution to

the integral from values of v greater than (-mgoes
to zero in the limit as (goes to infinity. This is

so because lhe real parls of c, v_ and eav( go lo minus

infinity in the limil, but the proof requires a

knowledge of lhe behavior of the real parts of et

and ca as functions of v for all J_'.

For the purpose juststated, it can be shown thai

,.',',,.-,(-IX,}
k •

for _-','4yv_

and k_l),*l" finite

Since _1_ and Aa are algebraic functions of v, the

contribution to t.he integral from integration in the

range v=_ -_/4 to v=( will go to zero exponentially

in the limit as _ goes to infinity provided that k is
finite and nonzero.

The contribution to the integral from values of _,
belween _ and _ can be shown to be zero in the

limit by exp.msion of the integrand for large v.
Then equation (E.1) becomes

lira '_/(r,$) lira Re --i [._-,i4

(.IS,._S-A:e...._)e,."dv (E.2)
y

This integral can be cvaluated by expansion of

the integrnnd for small v. Expansion of equations

(82), (83), (88) and (89) for sm'dl _ yields

/,4-q )2--1

A_,= 0(<7)

Substitution of these into equation (E.2) gives

where e((1) is n quantity which goes to zero in the

limit as _ goes to infinity. It follows thal_

40

(e-_'_exp[--(?4_ i- k/='_]q-O(,'_)},''.....?-- l" (lv
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The integral of the 0(_¥)--term is less than

0(} -'/s) and hence goes to zero in the limit,

leaving

lira u(r,}) limRc --i f_-'l_
/i-_= U ,¢-_= _" do

Y

By reversing thc steps leading to this expression,

the full interval of integration can lie restored and
the result written as

"y--1{ox } '÷
i d,¢,__) (E.3)

The second term can he evaluated by contour

integration and corresponds to a unit step at

v-----_. In this process the path of integn'ation is

taken to pass below the origin as discussed earlier.

The first integral in equation (E.3) can be found

in reference 34. The final result: for the veIocity
at large distance from the wall is

"kk}-+i/k_

(_=) (n.4)

Equation (E.4) indicates a smooth transition
from a value of zero at r=0 to a vahie of 1.0

when r becomes large compared to _. The transi-

tion is essentially completed within a range of

vahles of 1-fronl

I(_,--1"_ k_, which is a narrow region comparedy \q 7)
to the hu'ge distance from the wall under
consideration.

In the derivation of equation (E.4), the intcgrM
of the A_ term was found to be zero. It is some-

wtmt surprising that an integral involving only
the A_ term yields a nonzero value of the dis-

turbance at r--$_0. The results fl'oni the solu-

tion of the oscillating piston problem indicate that

the maximum possible velocity of the modified

classical waves is the iscntropic speed of sound a0.

In the present problem the A_ term represents the

contribution from the lnodified-classical wave sys-
tem, and in terms of the dimensionless coordinates

r, _ it follows that the maximum velocity of such

waves is 1.0. The region r--_<0 is a part of the
r, ( plane which cannot be reached by waves

initiated at r=0, _=0 and traveling at a maxi-

mum speed of 1.0. The A2 term, on the other

hand, represents the contribution from the radia-

tion-induced wave system. The oscillating-piston

solution indicates that the maximum speed of

these waves is the velocity of light (taken to be

infinite). Hence the region r--(_0 can be

reached by waves associated with the ,1_ term,
but not by those associated with the A_ tcrln.

The foregoing considerations tend to cast

doubt on the choice of the real axis in the complex

v plane as the path of integra.tion for inversion

of the Fourier transform of u(r, _). Neverthe-
less, tlfis choice was shown to correspond to the

boundary conditions and initial conditions for

the problem under consideration (in the discussion

following equation (67)). In that discussion it,
was noted that a branch cut associated with the

dependence of c_ and c2 on complex values of v

could be disregarded as far as the integrand is

concerned. This is true because the quantity
._1_exp (Cl@)+A2 exp (c2@) is continuous across

the branch cut in question, which is the one in

the lower half plane. However, zil exp (c_v_) alone

is not continuous across this cut., but instead

interchanges roles with the other term A: exp

(c2_) in passing from one side of the cut to the

other. As a result, if we wish to compute the
contribution from the modified classical wave

system 'done, the path of inte_'ation must be
altered to include an integration around the branch
cut in order to insure that the disturbance as-

sociated with this wave system is zero for negqtive

time. An integration around the branch cut

would also be required to evaluate the contri-

bution from the radiation-lnduced wave system
alone. This additional contribution from the

z12 term would not be zero, even though the

integral of the A= term along the real axis is

zero. Instead, the additional contribution from

the A2 term is just equal and opposite to the addi-

tional contribution from integration of the A_
term around the branch cut. This last fact

explains why, in evaluating the total disturbance,
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the integration around the branch cut can be

dispensed with. But it also means that part of
the total disttM,mce arises from the A_ term,
even though the integral of the ,42 term along the
real axis is zero. Then it is the radiation-induced

wave system _qfieh is responsible for the disturb-
ante at, r--}<0, "t region which cannot be reached
by the modified classical waves.

The corresponding expressions for pressure
and temperature far from the wall are simil,tr to
equation (E.4); namely,

(_o) (E.5)

1 ]-erf 1/_

RT'(r,}) 1 7--1
aoU 2 ,y

The term of order (kr/} 2) in equation (E.6) comes
from the A2 part of equation (SO). For very
la,ge r of order }_'/k, this term cancels the other
part of equation (E.a), and the perlurbation
temperature returns to zero. The velocity attd
pressure do not change in this process. Because
of the homogeneity of the gas and the presence
of the radiative heat transfer process, the gas
must reach a uniforln slate at very large time.
In this state the velocity and temperature of the
gas must be the same as the velocity and tempera-
ture of the wall. Since the wall temperature
is held fixed while the wall is moved impulsively,
the final perturbation temperature is zero. It
is interesting to note that the final perturbation
pressure is the same as that which wouhl occur

in the absence of radiation, even though the final
temperature is not.

Another ewduation can be made in closed form
as a cheek on the numerical calculations which

will be discussed later. At very large values
of k (high gas temperature) the radiative heat
transfer will tend to hold the temperature con-
stant. Under this condition, one would expect
the disturbance to propagate at the isothermal
speed ao/_. In terms of dimensionless eoordi-
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nares, the velocity transition would then be
expected to ocem" near the line r:s_}. It can
be shown that this is so for intermediate values

of (, but not at very small or very lalge (. For
this purpose equation (78) can he written as

li,u u(r, })=lira Re _/[ i,,,'_ _k

('*-lie I l_-{-dt2c- _)e _-J

=I_+I_+/-_ (E.7)

The first integral, which includes integration along
an infinitesim,d quarter circle about, the origin,
can be evaluated iu dosed form for large k. The
second integral can also be evaluated by means of
an exp'msion valid for large k. The remaining
integral can be shown to be zero in the limit as k
goes to infinity with ( fixed.

In disposing of the first an(t last integr,ds, a
knowledge of the properties of the quantities
c_ and c2 as functions of v, k, and 3, is needed.
Except for an infinitesimal deviation below the
orion, only real values of v need be considered.

Values of k from zero to infinity, and wdues of _,
between 1.0 and 2.0 are of interest. From equa-
tion (S1), the following properties can be deduced
for the foregoing ranges of v, k, 7:

1. The complex quantity c_ has no singuhtrities
(when the value at v-0 is properly defined).

2. The real part of c_ has zeros at v--0 and at
p_ (:10.

3. The imaginary part of c, has no zeros.

4. The quttntity c2 has a singularity at v=0.
5. Both real and imaginary parts of c., have

zeros at v= m.

6. The real and imaginary parts of c, and c2
are negative or zero.

By factoring out, the singularities and exp'mding
about the singularities and zeros, it can be estab-
lished that;

-i [1-at(_,-1) ikv -11+F'--- ik;J <c'

<--i [I--b,(7--1) --;kv -]1+_ _ ik.I (E.s)
and

a2 , / b., (E.9)
_'_(_- ik_)_" c_"-¢_ (_- i_)

where a,, bt, a2, b2 are positive finite nonzero num-

bers which can be chosen to be independent of
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v, k, and 7. To establish that a and b can be
independent of 3` and k for wdues of k approaching
zero or infinity, use can be made of a power series
expansion of equation (Sl) in powers of (3`--1).
The resulting power series converges for the values
of ,, k, and 3`under consideration.

The content of equations (E.S) and (E.9) can
be expressed by the relations

ikvc,_--i 1--bx@--l)(l+vU:i/c_,)_] (E.10)
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c_= @(_-ik) (E. 11)

where b_ and b.., are independent of v, k, and %
Equations (E.10) and (E.ll) can then be used as
upper or lower bounds with appropriate values of
b_ and b2. These expressions for cL and c2 are of
the same form as those resLflting from a truncated
expansion for smaIl (3,--1) used in refcl'ence 1.

The same procedure can be applied to the
expressions for A_ and A2 using equations (E.10)
and (E.11) to obtain the relations

A, _ 1-- b_(v-- 1) (_-- _:)"";(_--"g)
(1__v2 ikv)z (E.12)

• t" / _ F-

A,_= b_(v- 1) (.- 0w(v,'- _k--V_)
(1 +,:_ik,)_ (E.13)

These expressions provide upper bounds for the

quantity I--A_ A2 with b3 independent of v, k,
and 3`.

To evaluate the first integral in equation (E.7),
equations (E.10)-(E.13) can be expanded for small
v. The results arc

c,_--i, b'("_--l)k" k-O(v2) (E.14)
1 --ikv

c__ -- (b/_:_)[1 + 0(_/t")] (E. 15)

. ( ]

(E.16)

Substitution of these into equation (E.7), replacing
k_ with r and expanding for small values of r/k
and Uk yields

Re': - )
t_ "a"do LL ,

--b,(3`--l)_l_,_. ] 1-- ('y--1)_'z_

_"

"r 2

Evaluation of this integral, including the in-
finitesimal quarter circle about the origin, leads to
the result

Iz=)+lim 0z l,)_ _" (E.17)

Evaluation of the tlfird integral hi equation
(E.7) can be accomplished by expansion of equa-
tions (E.10)-(E.13) for large v as follows:

e,._--i--bl@--l)_:El+O(_)] (E.1s)

c.__ - bd_/;(,-ik) (E. 19)

A2= l--A, = 0 (!.,) (E.20)

Re-;-. oxp

(E.21)

The integral of the 0 (-1.,'] i-term goes to zero in
kw/ V

the liJnit.. The remainder can be evaluated by sep-
arming the argument of the second exponential
fa.etor into real and imaginary parts. After the
substitution s=,/k is made, the result is

--i
I3=lim Re --

k_ _ 7r

_1 m e e --bffv-1)]:_/(t+s-2) e
ts(t:r-kD

• 8

Since b_ is of order one, tbis becomes

Ia=lim 0 [e-(*-_)a] (E.22)
k_>¢a

For the remaining part of equation (E.7), the
exact ex-pressions for c and A given in equations
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(82), (83), (88) and (S9) must be used. How-
ever, an expansion for large k with v fixed can be
made as follows:

/'r + 1 v2\

,q-- 't,'_"r 2y'_

Y/1 ,,3/2 _,_-]

I2 =limk._,Re -----i_.f_-i [ec'_

+A:(eC:__eC,_)]e,. d_ (E.26)
Y

By breaking the integral into two parts, 1/k to 1.0

plus 1.0 to k, and expanding the exponentials in

power series, the term containing A2 is found to be

at most of order Uk. Similarly, the higher order

term in equation (E.23) can be shown to lead to

terms which are at most of ordervq-/(3,--l)Sk_.
Then equation (E.26) becomes

I2=lim Re e_(*- _)
k--)m • -1

ve"l dv

(E.27)

By reversing the procedure in which the L and I3

integrals were removed, the full interval of inte-
gration can be restored and/2 _witten as

i:=linl(-if_.e.(___%exp[ (7--1) _]dv

@0 (_, [ ('y-- 1)3k_]- t/z} ) (E.28)

This integral is of the same lotto'as that evaluated

in equation (E.3).

Finqlly, the velocity at 1,uge k is foundto be

lim u(r" () =lira l+erf [_(3,_1, _]_,_ ]

The corresponding results for pressure and tem-

perature are

k_ poaoU k-_ _ l+erf

(E.30)
and

lim RT'(r'l_)=lim (o (r _ })

(E.31)

Equations (E.29) (E.31) represent the isothermal

disturbance propagating at the isothermal signal
velocity as was anticipated. The error function

transit'ion occurs in a narrow region with width of

order _/k, which goes to zero in the limit as k goes

to infinity with _ fixed at a finite, nonzero value.

In the derivation of these relations, it was neces-

sary to neglect temns of order r/k, I_/k and
_/1/(3,-i)'_/c_. In fact, the results given here do

not apply at values of _ of order k-', where there

is a boundary layer. Also at large wdues of r
and _ of order k, different results are obtained.

Expressions valid for small _ were given in
equations (94)-(96). Those results are also valid

for the present case of large k provided flint _ is

small compared to k-L The velocity, tempera-

ture and pressure jumps occurring along the line
r=t_, ewduated in equ,tions (97)-(99), are still

correctly given in the case of large k. These

discontinuities are wit]fin the boundary layer

which develops for large k, since they decay ex-
ponentially in a distance of order k -_ fi'om the

wall. Also the results for large _ given in equa-
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tions (E.4) (E.6) are wdid in the limit as kgoes to

infinity, with } going to infinity faster.

The values of velocity, pressure, and tempera-

ture for very large time can be found by taking

the limit as vgoes to infinity. The factor e"" then
oscillates vapidly, and the contribution to each

integral vanishes for all values of , except those

near singularities in the remaining factors of each

ntegrand. The only such singularities nre at

v=0. Expansion of equations (82), (83), (.%q),

and (89) about ,--0 and integration of equations

(78)-(80) yields

lira u (r, _) _1.0 (E.32)
_---) ¢o U

lira p' (r,_) = 1.0 (E. 33)
r-_ P 0(/'0 (j

i. I_T'(T, })
ml =u (E.34)



APPENDIX F

APPROXIMATE CLOSED-FORM EVALUATION OF THE VELOCITY RESPONSE
TO AN IMPULSIVE MOTION OF A PISTON

In reference 1, the response to sinusoidal motion
of the wall was discussed with the aid of a trun-

cated expansion for small wdues of (7--1). The

same procedure is useful for obtaining further

infor, nation on the impulsive-motion problem.
Equations (SS) and (sg) can be interpreted as an

expansion for small values of (3'--1) in addition to

the previously given interpretations of small v,

large v, and lane k. The expansion converges
for values of 3" between 1.0 and 2.0. If terms of

order (3"--1) _ are neglected, equations (SS) and (89)
becom e

[ + 7c_=--.i 1--(3"--1) v_--ikv+l qa0(3"--l)2

<=-X

Further expansion of the square root factors
yields

v_ ikv+l+O(y--1) 2

+ca.= _I v(v--i_9 v_--ik'v@l

These expressions for c, and e., are identical to

equations (68) and (69) of reference 1, except for

the use here of the variables k and v in place of

K and 3. The equivalence can be established

with the aid of equations (39), (40), and (76)

herein, and equation (66) of reference 1.
Since 3"-- 1-- (_+ 1) (_-- 1)--2(x_-- 1)-k

0(_ 1) 2, the expressions for c, and e., can be

xswitten alternatively as

r +c,=--i 1-- (_,_--1) va ikv+l t-0(x'r--l)' (F.1)

k ?-"

-t-0(xcy--1) e-] (F.2)

The last forms are chosen instead of the previous

ones because the resulting truncated expansion is

exact for k_ as well as for k_0, v-+m, "rod

v->0. Using equations (F.I) and (F.2) in a cor-
responding expansion of equations (S2) and (83)

yiehls

A_- -- -- _--1)' "" F, c . r-,
y O,=-;kv+l)_

4o( r4-1) (F.:3)

The factor 3` in the denominator could be deleted,
but this would increase the value of the error in

the truncated expansion by a rather large factor

for a value of 3`=1.40. The coefficients of the

higher order terms in equations (F.1)-(F.3)

have maximum values of approximately 1.0 and

are zero for limiting values of k and v.

There is another precedent for an approximation

of the foregoing type in addition to t[tat afforded
in reference 1. The isothermal signal speed is ao/_,5

where ao is the isentropic speed of sound. Titus

an expansion for small wdues of (_--1) can be

interpreted as an expansion for a small fractional

difference between the isothermal and isentropie

speeds. In reference 3.5 a similar approximation
is introduced for the ease of a chemically relaxing

gas in the absence of radio lion. There the approxi-
mation is based on the smallness of the fractional

difference bet_een the frozen and equilibrium

speeds of sound. Comparison of the results of
reference 35 with the exact results of references 10

and 31 shows the approximation to be accurate to

within a few percent for the eases considered.
Estimates of the error introduced b 3" this approx-

imation in the present problem cnn be oblained

by repeating the closed-form evaluations for limit-

ing eases previously made. For the jump condi-

tions at r--(, the following results are obtained for

comparison with equalions (97)-(99) :

E,,,(_+U + _)u(_--+,_)_
lira ' -
t --_'0 L7

= e-'-_-"_t+O(_--l) "_ (F.4)

46
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Jim /(t-,,t) 7
• _o L poaoU poaoU I

- e-_-_-')_+o(_5;-1) -" (F.5)

rRT'Ct+_ t) nT'(L:--_,t_ 11_-':o'L .oU ,,°77

The comparison shows flint equations (F.4)-(F.6)

are exact at, t--0, but the decay factor in the exact

equations is exp--(_) (,_--l)kt r,lther than

exp--(_,_--l)kt as given by the approximation.

For 3,=7/5, the factor (_!{@1)/2 is equal to 1.092.

The discrepancy does not lead to a nommiformity

in the approximation even at large wdues of kt,

since the discontinuities (lie out ,_t large kt. For

3,=7/5 the largest error occurs at k(=5.46 where

the approximate decay factor is 0.368 compared
to the exact value of 0.403. The maxinmm error

is then 0.035, which is 3.5 percent of the total

velocity transition in the disturtmnce (equal to the

dimensionless wall velocity which is 1.0).

Using the approximate equations (F.I)-(F.3),

the disturbance at large t is found to be

lilnU(r't) I ( E 7_ ]}
-=- l-l-err

¢-,o u ,- '-'it  )z:t

+0(x:'_--- 1)" (F.7)

-I-0(_S- 1) 2 (F.S)

_-,= (-lot_/ 2 3, 2((V'_-- 1 )k

-l-0(_-- 1) _ (F.9)

Comparison with the exact equations (E.4)-(E.6)

shows that these resulls from the trunc'_ted expan-

sion are the same except that the factor _?(<_-- 1)k_

in the denominator of the argument of the error

.,/_+1 (v'_--l)k_ in the
function is replaced l) 3" ¥ y+l

C'7+ 1
exact equations. For 3,=7/5, the fa.ctor -3,q-i- is

equal to 0.910, representing an error of abott_ 10

percent. IIowever, again the maximum resulting

era'or in the perturbation quantities is a considera-

bly smaller fraction (2 percent) of the total change
in the transition. Since approximate expressions

for the wave speeds were used to derive equations

(F.7)-(F.9), cumulative errors might have been

expected to cause large discrepancies at _-->_.
However, this does not occur because the compo-

nents with the largest errors in wave speed are

sufficiently d,mlped that their amplitudes become

negligible before the error in position becomes

appreeiabh'.

The approximate results for the limit as /c

goes to in/hdty with r and _ fixed are

lira u(r;_)=lim ] _ , , ,.V r--_'yt ]"1
L2 _r ( _ -- 1 )t/kJ )

i 0(_-1) _ (F.10)

t qx[.iln P' :Q=[!.l,'1 2,._ Le,(@W--1)t,."k/j

+0N_--1)' (P.lO

lira l:T'ff,t) 0(_---i)' (F._2)
k_ (10_7

Comparison with the exa(,t equqtions (E.29)-

(E.31) shows these results to be correct excet)f_

that the factor _/(<_--l)$/k in the denominator

of the error function is replaced by

Y \ "'" - ' z-

in the exact relations. With 3'=71,5, the factor

(_/_q-1)/2v_ is equal to 0.923 representing an

error of 8 percent in position, but only 2 percent,

in wdue at, a given position.

The results for the limit ,s r goes to infinily
compared with the exact eqtmtions (E.32) and

(E.33) show the approximation to be exact in

this limit. The approximate counterpart of

equation (E.34) is correct to 0(<_--1).

The only remaining exact ewduMions awdhtblo

for comparison are those for the limit as r goes
to zero given in equations (94) (96). There it is

seen that the perturbation velocity, temperature,

and pressure are zero at r:-0, except at the wall,
where there are diseontinuilies. The truncated

expansion for small values of (<_--1) yields small
but nonzero values of the perturbation quantities

at r<0. This slight inconvenience can be re-
moved without affecting the results for the other
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limiting cases as follows: In the derivation of

the result for small r in the exact ease, use was
made of the fact that tile disturbance is zero at

negative r. The factor ef_T was replaced by

e*"--e-"1 *r, the second term leading to zero
contribution because it corresponds to 'm ev'flu-

alton of the original integral at negative values of
r, where the disturbance is zero. This alteration

can also be made in the exact equations (7S)-(80),

and the results will be unchanged for all wdues

of r and $. In other words, equations (78) (S0)
can be replaced with the relations

u(_, _) i f_°

p' (r, _)
D f_(Lo_ r

(F.13)

RT'(r,_)
aoU ..- 1 -- eq'_"Y/ el

eC_ (e_,__e__,!<) dv
('2 Y

(F.14)

(F._5)

When the truncated expansion for small (¢_-- I)

is used in these equations, the resulting perlurba-

tion quantities are zero at r<0, as they should be.
It can be shown that the evaluations of the other

limiting cases using the truncated expansion are

not affected by lhis change. Hence the previous

comparisons between approximate and exact

results remain valid when equations (F.13)-(F.I 5)

are used in place of (78) (SO).
To obtain a qualitative view of the over-all

flow field, either fro'they approximation or machine

computation is necessary. Both methods will be

used. Only the velocity field will be considered

in this study. For the machine compuhttions

one might expect that the integrals couht be

evaluated without resorting to the expansion for

small wflues of (s_--l). However, this is not

feasible, if a machine program valid for all values
of the parameters and variables is desired. For

such computations, considerable knowledge of
the properties of the intcgrand are needed for 't

proper design of the integration procedure. Also

the machine computing lime required is not negli-

gible. Since the truncated expansion for smaU

values of (¢¥--I) yields qualitatively correct

results, utilizes a shuplified integr'md, and de-

creases the required machine computing time by
about a factor of ten, it will be used here.

Using equations (F. 1) (F.3), equation (F.13) can
be written as

_(r,_) u_(r,()__u,(r,_)__O(_ 1, z
_r -=--U --t- _--T ,_'Y-- ) (F.16)

where

U 27r. J_o

U _, 27r

_ (e"_- e-"I _1)(_q _ ik/_-- 1) (,--i) (e"-'t--eq"t) d,
, m (1 4.-v2--ikv) z

(F.18)

An integral of the form of equalion (F.I 7) cannot

be evaluated directly by machine computation

bec'mse of the singularity at v--0. Also the

infinite interwd of integration cannot be t re'tted

by machine calculation. Therefore it is necessa W

to subtract terms fi'om the integrand which match
it at v--O and at large t,. Such terms should at

the same time be simple enough that they ran
be integrated in closed form. If care is taken in

the selection of the terms to be subtracted, a

uniformly valid closed-form approximation may
be found.

In equation (F.17), tl_e quantity to be matched

is the last exponential fitctor, which can be
written as

6--(_"_-l)l:_"_/(l+"_--ik_')--e--X"2/[("--ib)("+i!b)] (F.19)

where

X= (-_,_-- 1)k_ (101)

b= (]c/2)+ _r_/2) _+ 1 (lO2)

An approximation of equation (F.19) has been

found which yidds correctly all of the results for

the limiting cases previously discussed. This
approximation is

e-X3/V_-*_) _,+_/_)1_ (1 -- e -x/_2) e -x"_

+ (e-X/_=--e-X) e-X'=+°%-_x'_+e-X (F.20)
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Equation (F.20) was arrived at by considering the

form of the solution for large k. In this limit, the

quantity b can be replaced by k. However, it

can be shown that the approximation remains
valid for small k if b is used instead of k. By

adding and subtracting the terms on the right of

equation (F.20) in the integrand of equation
(F.17), the follm_ing results can be obtained

UN(T,_)u(r,_) uA(r,_) [ t-0(V'_--l) 2 (F.21)
U U U

where

u_ (_, _)
U 27r

_.= (e _'- e -_l,l) e - _$[ (1 -- e -xfb2) e -x'2

+ (e-.Wb2--e-X)e-X_t_2e-'X'ib+e -x]
Y

and

(F.22)

F (u:<(-,-,_) i (#"--e -''bl) e-"_
U 2_:. =

{e-x'21 t(,'-i_,_(,,+in'U __ (1 -- e-x/_2) e-x"2

+ (e_xtb2 e_X)e_X2tb_e_,X,l_Ne_x} 1
P

2(_--1) (_ri--ik/_--l) (r--i)
-- 7 (l+v_--ik,) 2 - (e_2"_--e-_'9)

dF

(F.23)

In equation (F.21) the quantity u.v(r, _)/U con-
tains the remaining part of u,(r, _)IU not included

in ua(r, ()/U, and all of u,(r, ()/U.

Equation (F.22) can be evaluated in closed form

using reference 34 to obt'fin

u_(_, _) =0 (T<0)
U

UA (T' _)-l_ff 2 (i -- e-x/_2) [e"f (_) +err (5 +# _l\2, _/_]

1 e_X( 1 , r--#'___l+_ t i___17±_(_-_'_-e-_)

criFb(_--_)--X-I, ,Fb(r+_)+Xl'_
_>o

(100)

In equation (F.23) the s3mametry of the integrand
can be used to reduce the interval of integration

and eliminate the imaginary part of the integrand.
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Upon substitution of ca and c._ from equations

(F.1) and (F.2), the result can bc written

_"(_, L)=o (_<0)
u

Uu(r,_) 2 ('= sin _]" -x _'2(1_-_'2)

U 71" IO P

V l
cos |v_+ (1+v_/c_v_ ] ),- Tt" J

-t 2(_--1) vr_r_ [e__l,_ cos (Xiv_--07)--e -_"_
"y r6

(X_,v#--0r)]} d, (r>0) (F.24)cos

where

(v'_-_)_'"(l+"_)
1= _k_-p 2 (F.25a)

X_= 1+ (_--l)k_t[(1 +v_)2+lc_v _] (F.25b)

_-----._,_-/_ cos (12 inn-' _)i/[u(1 _-kh,') '/`] (F.25,')

X__#7_llsin=_ __ (1 tan-' _//'t[v(lvi, +k'v')'"] (F.25d)

r_= (1 +k_v _)'/_ (F.25e)

/_-_/_
r._=_/--_--/vr_ (F.25f)

1
02=_ liili-(!:) (F.25g)

r_=[(r_ cos 0_--l)_+r_ sin _ 0_]_/_ (F.25h)

0_=tan -a [r_ sin 0_/(1--r_ cos 0_)] (F.25i)

r_= _ lY(--I-v_ (F.25j)

0_=-- tan -_ (1/v) (F.25k)

0_= --2 tan -_ [kv/(1 -t- v_)] (F.251)

ra-- (1 + ._) z+)['z._ (F.25m)

0;=0_+0_--0_ (F.25n)

Equation (F.24) is now in a form suitable for

evahmtion by machine computation as expbdncd

in appendix G.

=



APPENDIX G

NUMERICAL EVALUATION OF INTEGRALS

In this appendix, the results of tile numerical
evaluation of equation (F.24) by means of elec-
tronic machine computation will be discussed.
Since the singularities have been removed, the
only remaining difficulty in the numerical pro-
cedure is that associated with the infinite interval

of integration. The difficulty cannot be removed

by a transformation since there are a large number
of zeros of the integrand in the interwfi. In the
original integral, there were an infinite number of
zeros of the integrand before subtraction of a
function which was evaluated in closed form

(eq. (100)). As a result it is only necessary to
integrate equtttion (17.24) over some finite interwd,
beyond which the contribution is negligible. It
is not feasible to set an arbitiary lttrge interv,d of
integration, because the required computing time
is nob negligible. Therefore the approximate
required lilnit of integration was found as a func-
tion of the parameters k, % and the values of r

and (. To follow the variations of the integrand
within this interwd it was necessary to break the
interwd into one |nu,h'ed parts. The calculations
were then checked by doubling the interwd of
integration aud douhling the number of points

used. Since a large number of calculations were
made, some effort toward optimizing the program
was made. Fimdly a program was devised which

wmfld lead to valid evaluations of equation (F.24)
for values of }["belween 0.001 and 1000 and .y
between 1.0 and 2.0. A semiautomatic process for
choosing the appropriate values of r at which
calculations shouhl be made for given wflues of
k, % and _ was iududed.

For all values of the parameters and variables at

which calculations were nmde, the pa,'t of the
solution ewduated numerically (eq. (F.24)) was

mmfll compared to the total variation in u(r, _)/U
(equal to 1.0). Therefore lhe results from equation
(100) were used in the text to summarize the

findings from the nmnerical investigation. The

results presented there are replotted in figures 6,
7, and S on an expanded scale for comparison with
the more exact mmaerical computations. In figure

50

6 it can be seen that for small k the approximate
dimensionless velocity ua/U is correct to within 2
percent of the total transition. These results
correspond to the data used in figure 4. The
ewduations for intemlediate k, used in figure 3,
are compared with numerical values in figure 7.
Here there is a maximum error in q/a/U of "tbout. 12
percent. This occurs at (=1.819 and r=t/. The
amplitude of the step at this point and at all other

points is given correctly by UA/U, but lhe approxi-
marion overestimates the magnitude of the pre-
cursor to the main part of the disturbance. Figure
S shows the comparison for large k, corresponding
to figure 5. The discrepancies are similar to those
for internmdiate k.

The results from the dosed-form approximation

ua/U (eq. (100)) have been shox_m to be a good
approximation. Therefore equation (100) couhl be
used .is a basis for a qualitative understnnding of
the effect of the neglected cumulative nonlinear
terms which would be important at large distances
from the wall. For this purpose, values of the
temperature near r=_ and r=_'¥_ arc needed.
These can be found from equal|on (100) using
equations (2) and (4). The results for the tem-
perature, found in this way, will not be correct in
the entire flow field, but shouhl be sufficiently
accurate in the regions where they are needed for
the nonlinear correction.
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FIGURE 6.--Comparison of approximate and numerical

evahmtions of velocity response (g=0.001).
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APPENDIX H

RESPONSE TO IMPULSIVE TEMPERATURE VARIATION OF A FIXED WALL

With boundary conditions

T;(t)= (0 t<0O=constan_ t>0 (H,1)

u (t, O) = u_(t) = 0 (II.2)

and for an initial uniform state, equations (58) to

(64) and (73) to (77) carl be used to obtain the
solution

u(T,_) One1 (° (_)(eo,__e%,gd,,d_To y 2_r, . v

(rI.a)

(1-1.4)

")' y 1,4-c_ca
where

(e"'--l) d-z (tl.5)
P

1+_ 1+ c2=
"y 7

el' /T 11C2 )

,eli.o)

The variables and parameters have the same deft-

nitions here as in the previous problem (see the

table of symbols in appendix A).

Using the approximatio_l scheme discussed in

appendix F, the integrals can be simplified to the
following forms

(eq_-- eqq) (e",--e-_,l,l) -_q-0(_T- 1) (1-1.7)

p, o =_ ;° [-,'_-/1ff'_)=_rf °0°_, . k v2--ikv+ 1 -]

[eqq--is_e%'q(e_'_--e -*Oi) _+O(-_T-- 1)

(II.S)

r( "T'0",_) --i " _ _ _
0 -- 27r , . 1 --

(lit ./-2"-

(e"'-1) T+o(,'r-1) 0t.9)
where

ikv
c,=--i+(_--l) V--ikv+l+O(_T--1)_ (tl.10)

1

ca= (_+0(/{--1) (II.1 l)

Equation (H.9) can be ewduated approximately,
in a form that can be shown to be correct for all

limiting wflues of lhe variables and parameters.
The result is

T'(_,_)
0-- = (1 -e-q

[l--err (2_._rr)]+e-* (1--e -_) (II.12)

Equation (H.12) indicates that no discontinuities

in temperature develop. It can be verified from

equation (H.9) and 'also from equation (H.5) tha_

there is no discontinuity in temperature at. r=L

where one might be expected. Also the following

qu,ditative beh.tvior of the gas temperature can
be deduced from equation (II.12). At a point

near the wall (sin,all () the last term dominates.

This function indicates a rise in perturhation

temperature fi'om zero (at r=0) to a value equal

to the wall temperature, in a time when r becomes
of order k-L This variation includes a nonzero

initial slope, which can be verified in the exact

equation (H.5). At, a point far from the wall

(_>>1.0), the first term in equation (H.12) domi-
m_tes. This function also indicates a rise in

52
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perturbation temperature from zero at r=0 to a

wdue equal to thc wall temperature at a later
time. But here the initial slope is zero, and the

variation occurs in a region near r=k_ 2. Thus, at

large distance from the wall, the temperature
variation assumes the character of a diffusion

process.
No closed-form approximation for the velocity

has heen found. However, the following proper-

ties of the solution can be deduced from equation

(H.7). The velocity disturbance is everywhere
small compared to that associated with the

response to an impulsive wall motion involving

comparable temperature changes. Tim velocity

goes to zero at all limiting values of the parameters
and variables. No discontimfities in velocity

develop at r=_. The last two findings can be
verified in the exact equation (H.3). At a point

near the wall (small _), the velocity rises with a

nonzero initial slope, but eventually returns to

zero. Exactly at the wall, the velocity is zero

at all times according to the boundary condition

for a fixed wall (eq. (H.2)). At a point somewhat
removed from the w.dl (intermediate _), the

velocily disturbance consists of two parts. One
of these is associated with the temperature

disturbance and, hence, leads to a rise in velocity

near z=k_ _. The velocity returns to zero at

values of r large compared to k_ 2. Also, as

approaches infinity, this component of the velocity

disturbance goes to zero for all values of r. There
is a second part of the velocity disturbance at
intermediate distance from the wall. This com-

ponent has a peak near r----_ and hence represents

a compression wave resulting from the nonuniform

heating. This w,_ve travels at _t speed between
the isothernml and isentropic signal speeds. As it

progresses, it builds up initially, but subsequently

decays to zero at large distances fl'om the wall.

This part of the disturbance also goes to zero at

large r for all values of _. There is a small
variation in gas temperature associated with this

compression wave, hut it is of order (_y--1) and

is not included in the approximate expression for

the temperature given in equation (H.12). For

k=0 or/:-->co the total velocity disturb'race goes

to zero everywhere.
Since the velocity disturbance is sm,dl and goes

to zero at $--_ in the present, problem, the

cumulative nonlinear effects will be negligible for

larger disturbances than they would be for the

impulsive-motion case. Also from a mathemati-

cal point of view, it is interesting to note that,

for the present impulsive wall-temperature prob-
lem, the linear approximation is uniformly valid

in the limit of a vanishingly small disturbance.

In this limit, no discontinuities of the shock-wave

type develop, although dis(.ontinuities in the

deriw_tivcs of the flow quantities do occur at
r=O and at r=_.
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